• This record comes from PubMed

Error-prone PCR mutagenesis and reverse bacterial two-hybrid screening identify a mutation in asparagine 53 of the Staphylococcus aureus ESAT6-like component EsxB that perturbs interaction with EsxD

. 2018 Jul ; 63 (4) : 483-492. [epub] 20180222

Language English Country United States Media print-electronic

Document type Journal Article

Links

PubMed 29473132
DOI 10.1007/s12223-018-0591-6
PII: 10.1007/s12223-018-0591-6
Knihovny.cz E-resources

The ESAT6-like Secretion System (ESS) of the human pathogen Staphylococcus aureus secretes heterodimeric virulence effectors such as EsxB and EsxD. To gain insights into the nature of EsxB-EsxD interaction, randomly mutated esxB generated by error-prone PCR was co-transformed together with esxD as adenylate cyclase fusion constructs into cyclase-deficient Escherichia coli, followed by reverse bacterial two-hybrid screening. Three color species were observed: dark blue, light blue, and white (no EsxB-EsxD interaction). The esxB from white colonies was subjected to standard PCR to check for gene signal, followed by SDS-PAGE for variant stability assessment. The gene coding for a stable EsxB variant that perturbed interaction with EsxD was further subjected to DNA sequencing. A single point mutation in esxB at position 157 was identified, leading to an amino acid change from asparagine to aspartic acid at position 53 in the resulting protein. Structural modeling of EsxB reveals that N53 is surface exposed. Whereas N53S substitution by site-directed mutagenesis retained heterodimerization with EsxD, N53A substitution abrogated such interaction. In addition, N53D change in EsxB did not alter interaction with EssG, another soluble component of the ESS pathway, suggesting minimal impact of the N53D substitution on EsxB stability and solubility. Taken together, these data provide new insights into the nature of EsxB-EsxD interaction and offer a systematic approach for in vivo analysis of protein-protein interactions of pathogenic bacteria in non-pathogenic hosts.

See more in PubMed

Mol Microbiol. 2006 Nov;62(3):667-79 PubMed

Mol Microbiol. 2012 Oct;86(2):472-84 PubMed

Infect Immun. 2014 Oct;82(10):4144-53 PubMed

Anal Biochem. 1988 Aug 15;173(1):201-5 PubMed

J Bacteriol. 2016 Dec 13;199(1): PubMed

BMC Microbiol. 2012 Sep 25;12:219 PubMed

J Bacteriol. 2005 Apr;187(7):2233-43 PubMed

Philos Trans R Soc Lond B Biol Sci. 2012 Apr 19;367(1592):1123-39 PubMed

Proc Natl Acad Sci U S A. 2017 Feb 7;114(6):1371-1376 PubMed

FEBS Lett. 2016 Feb;590(3):349-57 PubMed

Proc Natl Acad Sci U S A. 2005 Jan 25;102(4):1169-74 PubMed

Mol Microbiol. 2013 Nov;90(4):734-43 PubMed

Infect Immun. 2008 Dec;76(12):5478-87 PubMed

Proc Natl Acad Sci U S A. 2006 May 23;103(21):8060-5 PubMed

J Bacteriol. 2017 Oct 31;199(23 ): PubMed

PLoS One. 2014 Feb 26;9(2):e89313 PubMed

Nucleic Acids Res. 2014 Jul;42(Web Server issue):W252-8 PubMed

Trends Microbiol. 2002 May;10(5):209-12 PubMed

PLoS One. 2012;7(9):e44143 PubMed

Nat Rev Microbiol. 2015 Jun;13(6):343-59 PubMed

Trends Microbiol. 2011 May;19(5):225-32 PubMed

EMBO J. 2005 Jul 20;24(14):2491-8 PubMed

Proc Natl Acad Sci U S A. 2012 Jul 10;109(28):11342-7 PubMed

Methods Mol Biol. 2003;231:3-9 PubMed

Nat Rev Microbiol. 2007 Nov;5(11):883-91 PubMed

Genes Dev. 2001 Jul 15;15(14):1725-52 PubMed

Proc Natl Acad Sci U S A. 2014 May 27;111(21):7653-8 PubMed

Protein Sci. 2015 Sep;24(9):1389-400 PubMed

J Mol Biol. 2008 Nov 14;383(3):603-14 PubMed

Mol Microbiol. 2014 Oct;94(2):367-82 PubMed

Mol Microbiol. 2008 Aug;69(3):736-46 PubMed

BMC Genomics. 2016 Mar 11;17 :222 PubMed

Mol Microbiol. 2009 Sep;73(5):950-62 PubMed

Methods Enzymol. 2000;328:59-73 PubMed

PLoS Comput Biol. 2016 Dec 9;12 (12 ):e1005242 PubMed

Proc Natl Acad Sci U S A. 2014 Oct 14;111(41):14758-63 PubMed

Nature. 1968 Mar 23;217(5134):1110-4 PubMed

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...