Transcriptome reprogramming due to the introduction of a barley telosome into bread wheat affects more barley genes than wheat
Language English Country England, Great Britain Media print-electronic
Document type Comparative Study, Journal Article, Research Support, Non-U.S. Gov't
Grant support
LM2010005
National Grid Infrastructure MetaCentrum - International
LO1204
Ministry of Education, Youth and Sports of the Czech Republic - International
P501/12/G090
Czech Science Foundation - International
PubMed
29510004
PubMed Central
PMC6131412
DOI
10.1111/pbi.12913
Knihovny.cz E-resources
- Keywords
- RNA-seq, alien introgression, chromosomal rearrangement, deletion, gene transcription, transcriptome modification,
- MeSH
- Genome, Plant * MeSH
- Hordeum genetics metabolism MeSH
- Triticum genetics metabolism MeSH
- Sequence Deletion MeSH
- Transcriptome * MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Comparative Study MeSH
Despite a long history, the production of useful alien introgression lines in wheat remains difficult mainly due to linkage drag and incomplete genetic compensation. In addition, little is known about the molecular mechanisms underlying the impact of foreign chromatin on plant phenotype. Here, a comparison of the transcriptomes of barley, wheat and a wheat-barley 7HL addition line allowed the transcriptional impact both on 7HL genes of a non-native genetic background and on the wheat gene complement as a result of the presence of 7HL to be assessed. Some 42% (389/923) of the 7HL genes assayed were differentially transcribed, which was the case for only 3% (960/35 301) of the wheat gene complement. The absence of any transcript in the addition line of a suite of chromosome 7A genes implied the presence of a 36 Mbp deletion at the distal end of the 7AL arm; this deletion was found to be in common across the full set of Chinese Spring/Betzes barley addition lines. The remaining differentially transcribed wheat genes were distributed across the whole genome. The up-regulated barley genes were mostly located in the proximal part of the 7HL arm, while the down-regulated ones were concentrated in the distal part; as a result, genes encoding basal cellular functions tended to be transcribed, while those encoding specific functions were suppressed. An insight has been gained into gene transcription in an alien introgression line, thereby providing a basis for understanding the interactions between wheat and exotic genes in introgression materials.
Department of Plant Life Science Faculty of Agriculture Ryukoku University Shiga Japan
Institute of Plant Sciences Paris Saclay IPS2 Paris Diderot Sorbonne Paris Cité Orsay France
Murdoch University Perth WA Australia
UMR MIA Paris AgroParisTech INRA Université Paris Saclay Paris France
See more in PubMed
Altschul, S.F. , Gish, W. , Miller, W. , Myers, E.W. and Lipman, D.J. (1990) Basic local alignment search tool. J. Mol. Biol. 215, 403–410. PubMed
Ashida, T. , Nasuda, S. , Sato, K. and Endo, T.R. (2007) Dissection of barley chromosome 5H in common wheat. Genes Genet. Syst. 82, 123–133. PubMed
Bauer, S. , Grossmann, S. , Vingron, M. and Robinson, P.N. (2008) Ontologizer 2.0 – a multifunctional tool for GO term enrichment analysis and data exploration. Bioinformatics, 24, 1650–1651. PubMed
Benjamini, Y. and Hochberg, Y. (1995) Controlling the false discovery rate: a practical and powerful approach to multiple testing. J. R. Statist. Soc. B, 57, 289–300.
Bento, M. , Pereira, H.S. , Rocheta, M. , Gustafson, P. , Viegas, W. and Silva, M. (2008) Polyploidization as a retraction force in plant genome evolution: sequence rearrangements in triticale. PLoS ONE, 3, e1402. PubMed PMC
Bilgic, H. , Cho, S. , Garvin, D.F. and Muehlbauer, G.J. (2007) Mapping barley genes to chromosome arms by transcript profiling of wheat–barley ditelosomic chromosome addition lines. Genome, 50, 898–906. PubMed
Blakeslee, A. (1937) Dédoublement du nombre de chromosomes chez les plantes par traitement chimique. C. R. Acad. Sci. Paris, 205, 476–479.
Bolger, A.M. , Lohse, M. and Usadel, B. (2014) Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics, 30, 2114–2120. PubMed PMC
Börner, A. , Ogbonnaya, F.C. , Röder, M.S. , Rasheed, A. , Periyannan, S. and Lagudah, E.S. (2015) Aegilops tauschii introgressions in wheat. In Alien Introgression in Wheat: Cytogenetics, Molecular Biology, and Genomics ( Molnár‐Láng, M. , Ceoloni, C. and Doležel, J. , eds), pp. 245–271. Cham: Springer International Publishing.
Branco, M.R. and Pombo, A. (2007) Chromosome organization: new facts, new models. Trends Cell Biol. 17, 127–134. PubMed
Brozynska, M. , Furtado, A. and Henry, R.J. (2016) Genomics of crop wild relatives: expanding the gene pool for crop improvement. Plant Biotechnol. J. 14, 1070–1085. PubMed PMC
Buggs, R.J. , Zhang, L. , Miles, N. , Tate, J.A. , Gao, L. , Wei, W. , Schnable, P.S. et al. (2011) Transcriptomic shock generates evolutionary novelty in a newly formed, natural allopolyploid plant. Curr. Biol. 21, 551–556. PubMed
Chen, Z.J. and Ni, Z. (2006) Mechanisms of genomic rearrangements and gene expression changes in plant polyploids. BioEssays, 28, 240–252. PubMed PMC
Chen, P. , Liu, W. , Yuan, J. , Wang, X. , Zhou, B. , Wang, S. , Zhang, S. et al. (2005) Development and characterization of wheat‐ Leymus racemosus translocation lines with resistance to Fusarium Head Blight. Theor. Appl. Genet. 111, 941–948. PubMed
Cho, S. , Garvin, D.F. and Muehlbauer, G.J. (2006) Transcriptome analysis and physical mapping of barley genes in wheat–barley chromosome addition lines. Genetics, 172, 1277–1285. PubMed PMC
Comai, L. (2000) Genetic and epigenetic interactions in allopolyploid plants. Plant Mol. Biol. 43, 387–399. PubMed
Comai, L. , Madlung, A. , Josefsson, C. and Tyagi, A. (2003) Do the different parental ‘heteromes’ cause genomic shock in newly formed allopolyploids?. Philos. Trans. R. Soc. Lond. B Biol. Sci. 358, 1149–1155. PubMed PMC
Curtis, T. and Halford, N.G. (2014) Food security: the challenge of increasing wheat yield and the importance of not compromising food safety. Ann. Appl. Biol. 164, 354–372. PubMed PMC
Elcock, L.S. and Bridger, J.M. (2010) Exploring the relationship between interphase gene positioning, transcriptional regulation and the nuclear matrix. Biochem. Soc. Trans. 38, 263–267. PubMed
Endo, T.R. (1988) Induction of chromosomal structural changes by a chromosome of Aegilops cylindrica L. in common wheat. J. Hered. 79, 366–370. PubMed
Endo, T.R. (2007) The gametocidal chromosome as a tool for chromosome manipulation in wheat. Chromosome Res. 15, 67–75. PubMed
Endo, T.R. (2011) Cytological dissection of the triticeae chromosomes by the gametocidal system. Methods Mol. Biol. 701, 247–257. PubMed
Endo, T. and Gill, B. (1996) The deletion stocks of common wheat. J. Hered. 87, 295–307.
Fatih, A.M. (1983) Analysis of the breeding potential of wheat‐Agropyron and wheat‐Elymus derivatives. I. Agronomic and quality characteristics. Hereditas, 98, 287–295. PubMed
Fedak, G. (1999) Molecular aids for integration of alien chromatin through wide crosses. Genome, 42, 584–591.
Feldman, M. and Levy, A.A. (2005) Allopolyploidy – a shaping force in the evolution of wheat genomes. Cytogenet. Genome Res. 109, 250–258. PubMed
Feldman, M. and Levy, A.A. (2012) Genome evolution due to allopolyploidization in wheat. Genetics, 192, 763–774. PubMed PMC
Feldman, M. , Liu, B. , Segal, G. , Abbo, S. , Levy, A.A. and Vega, J.M. (1997) Rapid elimination of low‐copy DNA sequences in polyploid wheat: a possible mechanism for differentiation of homoeologous chromosomes. Genetics, 147, 1381–1387. PubMed PMC
Feuillet, C. , Langridge, P. and Waugh, R. (2008) Cereal breeding takes a walk on the wild side. Trends Genet. 24, 24–32. PubMed
Friebe, B. , Jiang, J. , Raupp, W.J. , McIntosh, R.A. and Gill, B.S. (1996) Characterization of wheat‐alien translocations conferring resistance to diseases and pests: current status. Euphytica, 91, 59–87.
Fu, S. , Yang, M. , Fei, Y. , Tan, F. , Ren, Z. , Yan, B. , Zhang, H. et al. (2013) Alterations and abnormal mitosis of wheat chromosomes induced by wheat‐rye monosomic addition lines. PLoS ONE, 8, e70483. PubMed PMC
Gernand, D. , Rutten, T. , Varshney, A. , Rubtsova, M. , Prodanovic, S. , Bruss, C. , Kumlehn, J. et al. (2005) Uniparental chromosome elimination at mitosis and interphase in wheat and pearl millet crosses involves micronucleus formation, progressive heterochromatinization, and DNA fragmentation. Plant Cell, 17, 2431–2438. PubMed PMC
Griffiths, S. , Sharp, R. , Foote, T.N. , Bertin, I. , Wanous, M. , Reader, S. , Colas, I. et al. (2006) Molecular characterization of Ph1 as a major chromosome pairing locus in polyploid wheat. Nature, 439, 749–752. PubMed
Grob, S. , Schmid, M.W. and Grossniklaus, U. (2014) Hi‐C analysis in Arabidopsis identifies the KNOT, a structure with similarities to the flamenco locus of Drosophila . Mol. Cell, 55, 678–693. PubMed
Grossmann, S. , Bauer, S. , Robinson, P.N. and Vingron, M. (2007) Improved detection of overrepresentation of Gene‐Ontology annotations with parent–child analysis. Bioinformatics, 23, 3024–3031. PubMed
Gupta, P. , Varshney, R.K. , Sharma, P. and Ramesh, B. (1999) Molecular markers and their applications in wheat breeding. Plant Breeding, 118, 369–390.
Hurni, S. , Brunner, S. , Stirnweis, D. , Herren, G. , Peditto, D. , McIntosh, R.A. and Keller, B. (2014) The powdery mildew resistance gene Pm8 derived from rye is suppressed by its wheat ortholog Pm3. Plant J. 79, 904–913. PubMed
Islam, A.K.M.R. (1983) Ditelosomic additions of barley chromosomes to wheat. In Proceedings of the Sixth International Wheat Genetics Symposium ( Sakamoto, S. , ed.), pp. 233–238. Kyoto: Maruzen.
Islam, A. , Shepherd, K.W. and Sparrow, D.H.B. (1981) Isolation and characterization of euplasmic wheat–barley chromosome addition lines. Heredity, 46, 161–174.
IWGSC (2018) Shifting the limits in wheat research and breeding through a fully annotated and anchored reference genome sequence. Science, in press. PubMed
Jiang, J. , Friebe, B. and Gill, B. (1993) Recent advances in alien gene transfer in wheat. Euphytica, 73, 199–212.
Kashkush, K. , Feldman, M. and Levy, A.A. (2002) Gene loss, silencing and activation in a newly synthesized wheat allotetraploid. Genetics, 160, 1651–1659. PubMed PMC
Kato, K. , Kidou, S. and Miura, H. (2008) Molecular cloning and mapping of casein kinase 2 alpha and beta subunit genes in barley. Genome, 51, 208–215. PubMed
Kerber, E.R. and Aung, T. (1999) Leaf rust resistance gene lr34 associated with nonsuppression of stem rust resistance in the wheat cultivar canthatch. Phytopathology, 89, 518–521. PubMed
Kerber, E.R. and Dyck, P.L. (1973) Inheritance of stem rust resistance transferred from diploid wheat (Triticum monococcum) to tetraploid and hexaploid wheat and chromosome location of the gene involved. Can. J. Genet. Cytol. 15, 397–409.
Killick, R. and Eckley, I.A. (2014) changepoint: an R package for changepoint analysis. J. Stat. Softw. 58, 1–19.
Killick, R. , Fearnhead, P. and Eckley, I.A. (2012) Optimal detection of changepoints with a linear computational cost. J. Am. Stat. Assoc. 107, 1590–1598.
Kopecký, D. , Allen, D.C. , Duchoslav, M. , Doležel, J. and Lukaszewski, A.J. (2007) Condensation of rye chromatin in somatic interphase nuclei of Ph1 and ph1b wheat. Cytogenet. Genome Res. 119, 263–267. PubMed
Kopylova, E. , Noe, L. and Touzet, H. (2012) SortMeRNA: fast and accurate filtering of ribosomal RNAs in metatranscriptomic data. Bioinformatics, 28, 3211–3217. PubMed
Kruse, A. (1973) Hordeum × Triticum hybrids. Hereditas, 73, 157–161.
Kubaláková, M. , Vrána, J. , Číhaliková, J. , Šimková, H. and Doležel, J. (2002) Flow karyotyping and chromosome sorting in bread wheat (Triticum aestivum L.). Theor. Appl. Genet. 104, 1362–1372. PubMed
Langmead, B. , Trapnell, C. , Pop, M. and Salzberg, S.L. (2009) Ultrafast and memory‐efficient alignment of short DNA sequences to the human genome. Genome Biol. 10, R25. PubMed PMC
Levy, A.A. and Feldman, M. (2004) Genetic and epigenetic reprogramming of the wheat genome upon allopolyploidization. Biol. J. Lin. Soc. 82, 607–613.
Li, B. and Dewey, C.N. (2011) RSEM: accurate transcript quantification from RNA‐Seq data with or without a reference genome. BMC Bioinformatics, 12, 323. PubMed PMC
Liu, B. , Vega, J.M. and Feldman, M. (1998) Rapid genomic changes in newly synthesized amphiploids of Triticum and Aegilops. II. Changes in low‐copy coding DNA sequences. Genome, 41, 535–542. PubMed
Mascher, M. , Gundlach, H. , Himmelbach, A. , Beier, S. , Twardziok, S.O. , Wicker, T. , Radchuk, V. et al. (2017) A chromosome conformation capture ordered sequence of the barley genome. Nature, 544, 427–433. PubMed
McCallum, B.D. , Tekauz, A. and Gilbert, J. (2004) Reaction of a diverse collection of barley lines to Fusarium head blight. Plant Dis. 88, 167–174. PubMed
Mondal, S. , Rutkoski, J.E. , Velu, G. , Singh, P.K. , Crespo‐Herrera, L.A. , Guzman, C. , Bhavani, S. et al. (2016) Harnessing diversity in wheat to enhance grain yield, climate resilience, disease and insect pest resistance and nutrition through conventional and modern breeding approaches. Front. Plant Sci. 7, 991. PubMed PMC
Mott, I.W. and Wang, R.R.C. (2012) Genetic variation among laboratory accessions of Chinese Spring wheat (Triticum aestivum L.). Plant Genet. Resour. 10, 97–100.
Mujeeb‐Kazi, A. (1995) Intergeneric crosses: hybrid production and utilization. In Utilizing Wild Grass Biodiversity in Wheat Improvement: 15 Years of Wide Cross Research at CIMMYT ( Mujeeb‐Kazi, A. , Hettel, G.P. , eds), CIMMYT Research Report No. 2., pp. 22‐46. Mexico: CIMMYT.
Mukhopadhyay, P. , Singla‐Pareek, S.L. , Reddy, M.K. and Sopory, S.K. (2013) Stress‐mediated alterations in chromatin architecture correlate with down‐regulation of a gene encoding 60S rpL32 in rice. Plant Cell Physiol. 54, 528–540. PubMed
Murashige, T. and Skoog, F. (1962) A revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiol. Plant. 15, 473–497.
Pumphrey, M. , Bai, J. , Laudencia‐Chingcuanco, D. , Anderson, O. and Gill, B.S. (2009) Nonadditive expression of homoeologous genes is established upon polyploidization in hexaploid wheat. Genetics, 181, 1147–1157. PubMed PMC
Rayburn, A. and Gill, B. (1985) Use of biotin‐labeled probes to map specific DNA sequences on wheat chromosomes. J. Hered. 76, 78–81.
Rey, E. , Molnár, I. and Doležel, J. (2015) Genomics of wild relatives and alien introgressions. In Alien Introgression in Wheat: Cytogenetics, Molecular Biology, and Genomics ( Molnár‐Láng, M. , Ceoloni, C. and Doležel, J. , eds), pp. 347–381. Cham: Springer International Publishing.
Reynolds, M.P. , Calderini, D.F. , Condon, A.G. and Rajaram, S. (2001) Physiological basis of yield gains in wheat associated with the LR19 translocation from Agropyron elongatum . Euphytica, 119, 139–144.
Riley, R. and Chapman, V. (1958) Genetic control of the cytologically diploid behaviour of hexaploid wheat. Nature, 182, 713–715.
Robinson, M.D. , McCarthy, D.J. and Smyth, G.K. (2010) edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics, 26, 139–140. PubMed PMC
Sakai, K. , Nasuda, S. , Sato, K. and Endo, T.R. (2009) Dissection of barley chromosome 3H in common wheat and a comparison of 3H physical and genetic maps. Genes Genet. Syst. 84, 25–34. PubMed
Schubert, V. , Rudnik, R. and Schubert, I. (2014) Chromatin associations in Arabidopsis interphase nuclei. Front. Genet. 5, 389. PubMed PMC
Shi, F. and Endo, T.R. (1997) Production of wheat–barley disomic addition lines possessing an Aegilops cylindrica gametocidal chromosome. Genes Genet. Syst. 72, 243–248.
Stirnweis, D. , Milani, S.D. , Brunner, S. , Herren, G. , Buchmann, G. , Peditto, D. , Jordan, T. et al. (2014) Suppression among alleles encoding nucleotide‐binding‐leucine‐rich repeat resistance proteins interferes with resistance in F1 hybrid and allele‐pyramided wheat plants. Plant J. 79, 893–903. PubMed
Tang, J. , Ohyama, K. , Kawaura, K. , Hashinokuchi, H. , Kamiya, Y. , Suzuki, M. , Muranaka, T. et al. (2011) A new insight into application for barley chromosome addition lines of common wheat: achievement of stigmasterol accumulation. Plant Physiol. 157, 1555–1567. PubMed PMC
Vrána, J. , Cápal, P. , Číhaliková, J. , Kubaláková, M. and Doležel, J. (2016) Flow sorting plant chromosomes. Methods Mol. Biol. 1429, 119–134. PubMed
Wang, Y. , Tang, H. , Debarry, J.D. , Tan, X. , Li, J. , Wang, X. , Lee, T.H. et al. (2012) MCScanX: a toolkit for detection and evolutionary analysis of gene synteny and collinearity. Nucleic Acids Res. 40, e49. PubMed PMC
Wang, Y. , Tiwari, V.K. , Rawat, N. , Gill, B.S. , Huo, N. , You, F.M. , Coleman‐Derr, D. et al. (2016) GSP: a web‐based platform for designing genome‐specific primers in polyploids. Bioinformatics, 32, 2382–2383. PubMed
Wulff, B.B.H. and Moscou, M.J. (2014) Strategies for transferring resistance into wheat: from wide crosses to GM cassettes. Front. Plant Sci. 5, 692. PubMed PMC
Xu, C. , Bai, Y. , Lin, X. , Zhao, N. , Hu, L. , Gong, Z. , Wendel, J.F. et al. (2014) Genome‐wide disruption of gene expression in allopolyploids but not hybrids of rice subspecies. Mol. Biol. Evol. 31, 1066–1076. PubMed PMC
Yamamoto, M. and Mukai, Y. (1989) Application of fluorescence in situ hybridization to molecular cytogenetics of wheat. Wheat Information Service, 69, 30–32.
Yuan, Y. , Chen, X. , Xiao, S. , Islam, A. and Xin, Z. (2002) Identification of wheat–barley 2H alien substitution lines. Acta Botanica Sinica, 45, 1096–1102.