Biocompatible Materials Based on Self-Assembling Peptides on Ti25Nb10Zr Alloy: Molecular Structure and Organization Investigated by Synchrotron Radiation Induced Techniques
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
PubMed
29518968
PubMed Central
PMC5869639
DOI
10.3390/nano8030148
PII: nano8030148
Knihovny.cz E-zdroje
- Klíčová slova
- NEXAFS, XPS, bioactive materials, nanostructures, self-assembling peptides, synchrotron radiation induced spectroscopies, titanium alloy,
- Publikační typ
- časopisecké články MeSH
In this work, we applied advanced Synchrotron Radiation (SR) induced techniques to the study of the chemisorption of the Self Assembling Peptide EAbuK16, i.e., H-Abu-Glu-Abu-Glu-Abu-Lys-Abu-Lys-Abu-Glu-Abu-Glu-Abu-Lys-Abu-Lys-NH₂ that is able to spontaneously aggregate in anti-parallel β-sheet conformation, onto annealed Ti25Nb10Zr alloy surfaces. This synthetic amphiphilic oligopeptide is a good candidate to mimic extracellular matrix for bone prosthesis, since its β-sheets stack onto each other in a multilayer oriented nanostructure with internal pores of 5-200 nm size. To prepare the biomimetic material, Ti25Nb10Zr discs were treated with aqueous solutions of EAbuK16 at different pH values. Here we present the results achieved by performing SR-induced X-ray Photoelectron Spectroscopy (SR-XPS), angle-dependent Near Edge X-ray Absorption Fine Structure (NEXAFS) spectroscopy, FESEM and AFM imaging on Ti25Nb10Zr discs after incubation with self-assembling peptide solution at five different pH values, selected deliberately to investigate the best conditions for peptide immobilization.
Department of Industrial Engineering University of Padua Via Marzolo 9 Padua 35131 Italy
Department of Science Roma Tre University of Rome Via della Vasca Navale 79 00146 Rome Italy
National Institute for Optoelectronics 409 Atomistilor St 077125 Magurele Romania
Zobrazit více v PubMed
Faria A.C.L., Rodrigues R.C.S., Rosa A.L., Ribeiro R.F. Experimental titanium alloys for dental applications. J. Prosthet. Dent. 2014;112:1448–1460. doi: 10.1016/j.prosdent.2013.12.025. PubMed DOI
Textor M., Sittig C., Frauchiger V., Tosatti S., Brunette D.M. Titanium in Medicine. Springer; Berlin/Heidelberg, Germany: 2001. Properties and biological significance of natural oxide films on titanium and its alloys; pp. 171–230.
Shah F.A., Trobos M., Thomsen P., Palmquist A. Commercially pure titanium (cp-Ti) versus titanium alloy (Ti6Al4V) materials as bone anchored implants—Is one truly better than the other? Mater. Sci. Eng. C. 2016;62:960–966. doi: 10.1016/j.msec.2016.01.032. PubMed DOI
Dettin M., Zamuner A., Brun P., Castagliuolo I., Iucci G., Battocchio C., Messina M., Marletta G. Covalent grafting of Ti surfaces with peptide hydrogel decorated with growth factors and self-assembling adhesive sequences. J. Pept. Sci. 2014;20:585–594. doi: 10.1002/psc.2652. PubMed DOI
Liu X., Chu P.K., Ding C. Surface modification of titanium, titanium alloys, and related materials for biomedical applications. Mater. Sci. Eng. R. 2004;47:49–121. doi: 10.1016/j.mser.2004.11.001. DOI
Özcan M., Hämmerle C. Review: Titanium as a Reconstruction and Implant Material in Dentistry: Advantages and Pitfalls. Materials. 2012;5:1528–1545. doi: 10.3390/ma5091528. DOI
Brown S.A., Lemons J.E. Medical Applications of Titanium and Its Alloys: The Material and Biological Issues. ASTM; West Conshohocken, PA, USA: 1996.
Elias C.N., Lima J.H.C., Valiev R., Meyers A. Biomedical applications of titanium and its alloys. JOM. 2008;60:46–49. doi: 10.1007/s11837-008-0031-1. DOI
Khorasani A.M., Goldberg M., Doeven E.H., Littlefair G. Titanium in biomedical applications—Properties and fabrication: A review. J. Biomater. Tissue Eng. 2015;5:593–619. doi: 10.1166/jbt.2015.1361. DOI
Veiga C., Davim J.P., Loureiro A.J.R. Properties and applications of titanium alloys: A brief review. Rev. Adv. Mater. Sci. 2012;32:133–148.
Geetha M., Singh A.K., Asokamani R., Gogia A.K. Ti based biomaterials, the ultimate choice for orthopaedic implants—A review. Prog. Mater. Sci. 2009;54:397–425. doi: 10.1016/j.pmatsci.2008.06.004. DOI
Sidambe A.T. Biocompatibility of Advanced Manufactured Titanium Implants—A Review. Materials. 2014;7:8168–8188. doi: 10.3390/ma7128168. PubMed DOI PMC
Katzer A., Hockertz S., Buchhorn G.H., Loehr J.F. In vitro toxicity and mutagenicity of CoCrMo and Ti6Al wear particles. Toxicology. 2003;190:145–154. doi: 10.1016/S0300-483X(03)00147-1. PubMed DOI
Satoh K., Sato S., Wagatsuma K. Formation mechanism of toxic-element-free oxide layer on Ti–6Al–4V alloy in d.c. glow discharge plasma with pure oxygen gas. Surf. Coat. Technol. 2016;302:82–87. doi: 10.1016/j.surfcoat.2016.05.080. DOI
Lecocq M., Félix M.S., Linares J.-M., Chaves-Jacob J., Decherchi P., Dousset E. Titanium implant impairment and surrounding muscle cell death following neuro-myoelectrostimulation: An in vivo study. J. Biomed. Mater. Res. Part B. 2015;103:1594–1601. doi: 10.1002/jbm.b.33353. PubMed DOI
Hussein M.A., Mohammed A.S., Al-Aqeeli N. Wear Characteristics of Metallic Biomaterials: A Review. Materials. 2015;8:2749–2768. doi: 10.3390/ma8052749. DOI
Mahapatro A.J. Metals for biomedical applications and devices. J. Biomater. Tissue Eng. 2012;2:259–268. doi: 10.1166/jbt.2012.1059. DOI
Niinomi M., Nakai M., Hieda J. Development of new metallic alloys for biomedical applications. Acta Biomater. 2012;8:3888–3903. doi: 10.1016/j.actbio.2012.06.037. PubMed DOI
Okazaki Y., Rao S., Asao S., Tateishi T., Katsuda S., Furuki Y. Effects of Ti, Al and V concentrations on cell viability. Mater. Trans. JIM. 1998;39:1053–1062. doi: 10.2320/matertrans1989.39.1053. DOI
Zhang L.-C., Attar H., Calin M., Eckert J. Review on manufacture by selective laser melting and properties of titanium based materials for biomedical applications. J. Mater. Technol. 2016;31:66–76. doi: 10.1179/1753555715Y.0000000076. DOI
Li Y., Yang C., Zhao H., Qu S., Li X., Li Y. New Developments of Ti-Based Alloys for Biomedical Applications. Materials. 2014;7:1709–1800. doi: 10.3390/ma7031709. PubMed DOI PMC
Hao Y.-L., Li S.-J., Yang R. Biomedical titanium alloys and their additive manufacturing. Rare Met. 2016;35:661–671. doi: 10.1007/s12598-016-0793-5. DOI
Wang L., Lu W., Qin J., Zhang F., Zhang D. Influence of cold deformation on martensite transformation and mechanical properties of Ti–Nb–Ta–Zr alloy. J. Alloys Compd. 2009;469:512–518. doi: 10.1016/j.jallcom.2008.02.032. DOI
Tane M., Hagihara K., Ueda M., Nakano T., Okuda Y. Elastic-modulus enhancement during room-temperature aging and its suppression in metastable Ti–Nb-Based alloys with low body-centered cubic phase stability. Acta Mater. 2016;102:373–384. doi: 10.1016/j.actamat.2015.09.030. DOI
Stenlund P., Omar O., Brohede U., Norgren S., Norlindh B., Johansson A., Lausmaa J., Thomsen P., Palmquist A. Bone response to a novel Ti–Ta–Nb–Zr alloy. Acta Biomater. 2015;20:165–175. doi: 10.1016/j.actbio.2015.03.038. PubMed DOI
Okazaki Y. A New Ti–15Zr–4Nb–4Ta alloy for medical applications. Curr. Opin. Solid State Mater. Sci. 2001;5:45–53. doi: 10.1016/S1359-0286(00)00025-5. DOI
Okazaki Y., Gotoh E. Comparison of fatigue strengths of biocompatible Ti-15Zr-4Nb-4Ta alloy and other titanium materials. Mater. Sci. Eng. C. 2011;31:325–333. doi: 10.1016/j.msec.2010.09.015. DOI
Banerjee R., Nag S., Stechschulte J., Fraser H.L. Strengthening mechanisms in Ti–Nb–Zr–Ta and Ti–Mo–Zr–Fe orthopaedic alloys. Biomaterials. 2004;25:3413–3419. doi: 10.1016/j.biomaterials.2003.10.041. PubMed DOI
Nag S., Banerjee R., Fraser H.L. Microstructural evolution and strengthening mechanisms in Ti–Nb–Zr–Ta, Ti–Mo–Zr–Fe and Ti–15Mo biocompatible alloys. Mater. Sci. Eng. C. 2005;25:357–362. doi: 10.1016/j.msec.2004.12.013. PubMed DOI
Liu Y.Z., Zu X.T., Qiu S.Y., Wang L., Ma W.G., Wei C.F. Surface characterization and corrosion resistance of Ti–Al–Zr alloy by niobium ion implantation. Nucl. Instrum. Methods Phys. Res. Sect. B. 2006;244:397–402. doi: 10.1016/j.nimb.2005.10.025. DOI
Chaves J.M., Florêncio O., Silva P.S., Marques P.W.B., Afonso C.R.M. Influence of phase transformations on dynamical elastic modulus and anelasticity of beta Ti–Nb–Fe alloys for biomedical applications. J. Mech. Behav. Biomed. Mater. 2015;46:184–196. doi: 10.1016/j.jmbbm.2015.02.030. PubMed DOI
Miyazaki S., Kim H.Y., Hosoda H. Development and characterization of Ni-free Ti-base shape memory and superelastic alloys. Mater. Sci. Eng. A. 2006;438–440:18–24. doi: 10.1016/j.msea.2006.02.054. DOI
Bai Y., Hao Y.L., Li S.J., Hao Y.Q., Yang R., Prima F. Corrosion behavior of biomedical Ti–24Nb–4Zr–8Sn alloy in different simulated body solutions. Mater. Sci. Eng. C. 2013;33:2159–2167. doi: 10.1016/j.msec.2013.01.036. PubMed DOI
Fojt J., Joska L., Málek J. Corrosion behaviour of porous Ti–39Nb alloy for biomedical applications. Corros. Sci. 2013;71:78–83. doi: 10.1016/j.corsci.2013.03.007. DOI
Okazaki Y., Rao S., Asao S., Tateishi T. Effects of metallic concentrations other than Ti, Al and V on cell viability. Mater. Trans. JIM. 1998;39:1070–1079. doi: 10.2320/matertrans1989.39.1070. DOI
Li Y., Wong C., Xiong J., Hodgson P., Wen C. Cytotoxicity of titanium and titanium alloying elements. J. Dent. Res. 2010;89:493–497. doi: 10.1177/0022034510363675. PubMed DOI
Matsuno H., Yokoyama A., Watari F., Uo M., Kawasaki T. Biocompatibility and osteogenesis of refractory metal implants, titanium, hafnium, niobium, tantalum and rhenium. Biomaterials. 2001;22:1253–1262. doi: 10.1016/S0142-9612(00)00275-1. PubMed DOI
Hickman J.W., Gulbransen E.A. Oxide films formed on titanium, zirconium, and their alloys with nickel, copper, and cobalt. Anal. Chem. 1948;20:158–165. doi: 10.1021/ac60014a016. DOI
Yilmazbayhan A., Motta A.T., Comstock R.J., Sabol G.P., Laid B., Cai Z. Structure of zirconium alloy oxides formed in pure water studied with synchrotron radiation and optical microscopy: Relation to corrosion rate. J. Nucl. Mater. 2004;324:6–22. doi: 10.1016/j.jnucmat.2003.08.038. DOI
Motta A.T., Gomes da Silva M.J., Yilmazbayhan A., Comstock R.J., Cai Z., Lai B. Microstructural characterization of oxides formed on model Zr alloys using synchrotron radiation. J. ASTM Int. 2008;5:1–20. doi: 10.1520/JAI101257. DOI
Wang B.L., Zheng Y.F., Zhao L.C. Electrochemical corrosion behavior of biomedical Ti–22Nb and Ti–22Nb–6Zr alloys in saline medium. Mater. Corros. 2009;60:788–794. doi: 10.1002/maco.200805173. DOI
Ishii M., Kaneko M., Oda T. Titanium and Its Alloys as Key Materials for Corrosion Protection Engineering. Shin-Nittetsu Giho; Tokyo, Japan: 2002. pp. 49–56.
Abdel-Hady M., Fuwa H., Hinoshita K., Kimura H., Shinzato Y., Morinaga M. Phase stability change with Zr content in β-type Ti–Nb alloys. Scr. Mater. 2007;57:1000–1003. doi: 10.1016/j.scriptamat.2007.08.003. DOI
Kim J.I., Kim H.Y., Inamura T., Hosoda H., Miyazaki S. Shape memory characteristics of Ti–22Nb–(2–8)Zr(at %) biomedical alloys. Mater. Sci. Eng. A. 2005;403:334–339. doi: 10.1016/j.msea.2005.05.050. DOI
Wang B.L., Li L., Zheng Y.F. In vitro cytotoxicity and hemocompatibility studies of Ti-Nb, Ti-Nb-Zr and Ti-Nb-Hf biomedical shape memory alloys. Biomed. Mater. 2010;5:44102. doi: 10.1088/1748-6041/5/4/044102. PubMed DOI
Kim J.I., Kim H.Y., Inamura T., Hosoda H., Miyazaki S. Effect of annealing temperature on microstructure and shape memory characteristics of Ti–22Nb–6Zr (at %) biomedical alloy. Mater. Trans. 2006;47:505–512. doi: 10.2320/matertrans.47.505. DOI
Nayak S., Dey T., Naskar D., Kundu S.C. The promotion of osseointegration of titanium surfaces by coating with silk protein sericin. Biomaterials. 2013;34:2855–2864. doi: 10.1016/j.biomaterials.2013.01.019. PubMed DOI
Franchi S., Battocchio C., Galluzzi M., Navisse E., Zamuner A., Dettin M., Iucci G. Self-assembling peptide hydrogels immobilized on silicon surfaces. Mater. Sci. Eng. C. 2016;69:200–207. doi: 10.1016/j.msec.2016.06.060. PubMed DOI
Gambaretto R., Tonin L., Di Bello C., Dettin M. Self-assembling peptides: Correlation among sequence, secondary structure in solution and film formation. Biopolymers. 2008;89:906–915. doi: 10.1002/bip.21030. PubMed DOI
Iucci G., Battocchio C., Dettin M., Gambaretto R., Polzonetti G. A NEXAFS and XPS study of the adsorption of self-assembling peptides on TiO2: The influence of the side chains. Surf. Interface Anal. 2008;40:210–214. doi: 10.1002/sia.2717. DOI
Battocchio C., Iucci G., Dettin M., Carravetta V., Monti S., Polzonetti G. Self-assembling behaviour of self-complementary oligopeptides on biocompatible substrates. Mater. Sci. Eng. B. 2010;169:36–42. doi: 10.1016/j.mseb.2009.12.051. DOI
Kokubo T., Takadama H. How useful is SBF in predicting in vivo bone bioactivity? Biomaterials. 2006;27:2907–2915. doi: 10.1016/j.biomaterials.2006.01.017. PubMed DOI
Gilewicz A., Chmielewska P., Murzynski D., Dobruchowska E., Warcholinski B. Corrosion resistance of CrN and CrCN/CrN coatings deposited using cathodic arc evaporation in Ringer’s and Hank’s solutions. Surf. Coat. Technol. 2016;299:7–14. doi: 10.1016/j.surfcoat.2016.04.069. DOI
Mansfeld F., Oldham K.B. A modification of the Stern—Geary linear polarization equation. Corros. Sci. 1971;11:787–796. doi: 10.1016/S0010-938X(71)80012-4. DOI
Erika G., Ruslan O., Florian S., Hikmet S., Alexander F. LowDosePES: An End-Station for Low-Dose, Angular-Resolved and Time-Resolved Photoelectron Spectroscopy at BESSY II; Proceedings of the Scientific Opportunities with Electron Spectroscopy and RIXS, HZB/BESSY II; Berlin, Germany. 16–18 October 2017.
Moulder J.F., Stickle W.F., Sobol P.E., Bomben K.D. Handbook of X-ray Photoelectron Spectroscopy. Physical Electronics Inc.; Eden Prairie, MN, USA: 1996.
Beamson G., Briggs D. High Resolution XPS of Organic Polymers, The Scienta ESCA300 Database. John Wiley & Sons; Chichester, UK: 1992.
Briggs D., Seah M.P. Practical Surface Analysis, Vol. 1, Auger and X-ray Photoelectron Spectroscopy. John Wiley & Sons; Chichester, UK: 1994.
Nannarone S., Borgatti F., De Luisa A., Doyle B.P., Gazzadi G.C., Gigli A., Finetti P., Mahne N., Pasquali L., Pedio M., et al. The BEAR Beamline at Elettra. AIP Conf. Proc. 2004;705:450–453.
Kim H.Y., Ikehara Y., Kim J.I., Hosoda H., Miyazaki S. Martensitic transformation, shape memory effect and superelasticity of Ti–Nb binary alloys. Acta Mater. 2006;54:2419–2429. doi: 10.1016/j.actamat.2006.01.019. DOI
Bowen A.W. Omega phase embrittlement in aged Ti-15%Mo. Scr. Metall. 1971;5:709–715. doi: 10.1016/0036-9748(71)90258-4. DOI
Sass S.L. The ω phase in a Zr-25 at % Ti alloy. Acta Metall. 1969;17:813–820. doi: 10.1016/0001-6160(69)90100-X. DOI
Isaacs H.S., Ishikawa Y. Current and Potential Transients during Localized Corrosion of Stainless Steel. J. Electrochem. Soc. 1985;132:1288–1293. doi: 10.1149/1.2114104. DOI
Thirumalaikumarasamy D., Shanmugam K., Balasubramanian V. Comparison of the corrosion behaviour of AZ31B magnesium alloy under immersion test and potentiodynamic polarization test in NaCl solution. J. Magnes. Alloys. 2014;2:36–49. doi: 10.1016/j.jma.2014.01.004. DOI
Song G. Control of biodegradation of biocompatable magnesium alloys. Corros. Sci. 2007;49:1696–1701. doi: 10.1016/j.corsci.2007.01.001. DOI
Cotrut C.M., Parau A.C., Gherghilescu A.I., Titorencu I., Pana I., Cojocaru D.V., Pruna V., Constantin L., Dan I., Vranceanu D.M., et al. Mechanical, in vitro corrosion resistance and biological compatibility of casted and annealed Ti25Nb10Zr alloy. Metals. 2017;7:86. doi: 10.3390/met7030086. DOI
Stohr J. In: NEXAFS Spectroscopy. Gomer C., editor. Springer; Berlin, Germany: 1991. (Springer Series in Surface Sciences).