Living in two worlds: Evolutionary mechanisms act differently in the native and introduced ranges of an invasive plant
Status PubMed-not-MEDLINE Language English Country Great Britain, England Media electronic-ecollection
Document type Journal Article
PubMed
29531666
PubMed Central
PMC5838077
DOI
10.1002/ece3.3869
PII: ECE33869
Knihovny.cz E-resources
- Keywords
- Phragmites, biological invasions, common reed, evolution, human activities, isolation by distance, isolation by environment, landscape genetics, spatial genetic structure,
- Publication type
- Journal Article MeSH
Identifying the factors that influence spatial genetic structure among populations can provide insights into the evolution of invasive plants. In this study, we used the common reed (Phragmites australis), a grass native in Europe and invading North America, to examine the relative importance of geographic, environmental (represented by climate here), and human effects on population genetic structure and its changes during invasion. We collected samples of P. australis from both the invaded North American and native European ranges and used molecular markers to investigate the population genetic structure within and between ranges. We used path analysis to identify the contributions of each of the three factors-geographic, environmental, and human-related-to the formation of spatial genetic patterns. Genetic differentiation was observed between the introduced and native populations, and their genetic structure in the native and introduced ranges was different. There were strong effects of geography and environment on the genetic structure of populations in the native range, but the human-related factors manifested through colonization of anthropogenic habitats in the introduced range counteracted the effects of environment. The between-range genetic differences among populations were mainly explained by the heterogeneous environment between the ranges, with the coefficient 2.6 times higher for the environment than that explained by the geographic distance. Human activities were the primary contributor to the genetic structure of the introduced populations. The significant environmental divergence between ranges and the strong contribution of human activities to the genetic structure in the introduced range suggest that invasive populations of P. australis have evolved to adapt to a different climate and to human-made habitats in North America.
Department of Agricultural Science University of Bologna Bologna Italy
Department of Bioscience Aarhus University Aarhus C Denmark
Department of Ecology Faculty of Science Charles University Prague Czech Republic
Natural Resources Science The University of Rhode Island Kingston RI USA
See more in PubMed
Alexander, J. M. , Poll, M. , Dietz, H. , & Edwards, P. J. (2009). Contrasting patterns of genetic variation and structure in plant invasions of mountains. Diversity and Distributions, 15, 502–512. https://doi.org/10.1111/j.1472-4642.2008.00555.x DOI
Allen, W. J. , Meyerson, L. A. , Cummings, D. , Anderson, J. , Bhattarai, G. P. , & Cronin, J. T. (2017). Biogeography of a plant invasion: Drivers of latitudinal variation in enemy release. Global Ecology and Biogeography, 26, 435–446. https://doi.org/10.1111/geb.12550 DOI
Arrigo, N. , Tuszynski, J. W. , Ehrich, D. , Gerdes, T. , & Alvarez, N. (2009). Evaluating the impact of scoring parameters on the structure of intra‐specific genetic variation using RawGeno, an R package for automating AFLP scoring. BMC Bioinformatics, 10, 33 https://doi.org/10.1186/1471-2105-10-33 PubMed DOI PMC
Bart, D. , Burdick, D. , Chambers, R. , & Hartman, J. M. (2006). Human facilitation of Phragmites australis invasions in tidal marshes: A review and synthesis. Wetlands Ecology and Management, 14, 53–65. https://doi.org/10.1007/s11273-005-2566-z DOI
Belzile, F. , Labbé, J. , LeBlanc, M.‐C. , & Lavoie, C. (2010). Seeds contribute strongly to the spread of the invasive genotype of the common reed (Phragmites australis). Biological Invasions, 12, 2243–2250. https://doi.org/10.1007/s10530-009-9634-x DOI
Bhattarai, G. P. , Meyerson, L. A. , Anderson, J. , Cummings, D. , Allen, W. J. , & Cronin, J. T. (2017). Biogeography of a plant invasion: Genetic variation and plasticity in latitudinal clines for traits related to herbivory. Ecological Monographs, 87, 57–75. https://doi.org/10.1002/ecm.1233 DOI
Bonin, A. , Bellemain, E. , Eidesen, P. B. , Pompanon, F. , Brochmann, C. , & Taberlet, P. (2004). How to track and assess genotyping errors in population genetics studies. Molecular Ecology, 13, 3261–3273. https://doi.org/10.1111/j.1365-294X.2004.02346.x PubMed DOI
Bossdorf, O. , Auge, H. , Lafuma, L. , Rogers, W. E. , Siemann, E. , & Prati, D. (2005). Phenotypic and genetic differentiation between native and introduced plant populations. Oecologia, 144, 1–11. https://doi.org/10.1007/s00442-005-0070-z PubMed DOI
Bouton, N. (2000). Progressive invasion and allopatric speciation can also explain distribution patterns of rock‐dwelling cichlids from southern Lake Victoria. Ecology Letters, 3, 166–171. https://doi.org/10.1046/j.1461-0248.2000.00140.x DOI
Bradley, B. A. , Blumenthal, D. M. , Wilcove, D. S. , & Ziska, L. H. (2010). Predicting plant invasions in an era of global change. Trends in Ecology & Evolution, 25, 310–318. https://doi.org/10.1016/j.tree.2009.12.003 PubMed DOI
Bradley, B. A. , Wilcove, D. S. , & Oppenheimer, M. (2010). Climate change increases risk of plant invasion in the Eastern United States. Biological Invasions, 12, 1855–1872. https://doi.org/10.1007/s10530-009-9597-y DOI
Cao, L. J. , Wei, S. J. , Hoffmann, A. A. , Wen, J. B. , & Chen, M. (2016). Rapid genetic structuring of populations of the invasive fall webworm in relation to spatial expansion and control campaigns. Diversity and Distributions, 22, 1276–1287. https://doi.org/10.1111/ddi.12486 DOI
Catling, P. M. , & Carbyn, S. (2006). Recent invasion, current status and invasion pathway of European common reed, Phragmites australis subspecies australis, in the Southern Ottawa District. The Canadian Field‐Naturalist, 120, 307–312. https://doi.org/10.22621/cfn.v120i3.320 DOI
Chambers, R. M. , Meyerson, L. A. , & Saltonstall, K. (1999). Expansion of Phragmites australis into tidal wetlands of North America. Aquatic Botany, 64, 261–273. https://doi.org/10.1016/S0304-3770(99)00055-8 DOI
Chu, C. J. , Bartlett, M. , Wang, Y. S. , He, F. L. , Weiner, J. , Chave, J. , & Sack, L. (2016). Does climate directly influence NPP globally? Global Change Biology, 22, 12–24. https://doi.org/10.1111/gcb.13079 PubMed DOI
Clevering, O. A. , & Lissner, J. (1999). Taxonomy, chromosome numbers, clonal diversity and population dynamics of Phragmites australis . Aquatic Botany, 64, 185–208. https://doi.org/10.1016/S0304-3770(99)00059-5 DOI
Colautti, R. I. , & Lau, J. A. (2015). Contemporary evolution during invasion: Evidence for differentiation, natural selection, and local adaptation. Molecular Ecology, 24, 1999–2017. https://doi.org/10.1111/mec.13162 PubMed DOI
Cronin, J. T. , Bhattarai, G. P. , Allen, W. J. , & Meyerson, L. A. (2015). Biogeography of a plant invasion: Plant‐herbivore interactions. Ecology, 96, 1115–1127. https://doi.org/10.1890/14-1091.1 PubMed DOI
Dlugosch, K. M. , & Parker, I. M. (2008). Founding events in species invasions: Genetic variation, adaptive evolution, and the role of multiple introductions. Molecular Ecology, 17, 431–449. https://doi.org/10.1111/j.1365-294X.2007.03538.x PubMed DOI
Earl, D. A. , & Vonholdt, B. M. (2012). STRUCTURE HARVESTER: A website and program for visualizing STRUCTURE output and implementing the Evanno method. Conservation Genetics Resources, 4, 359–361. https://doi.org/10.1007/s12686-011-9548-7 DOI
Ehrich, D. (2006). AFLPDAT: A collection of R functions for convenient handling of AFLP data. Molecular Ecology Notes, 6, 603–604. https://doi.org/10.1111/j.1471-8286.2006.01380.x DOI
Eller, F. , Skálová, H. , Caplan, J. , Bhattarai, G. P. , Burger, M. K. , Cronin, J. T. , … Brix, H. (2017). Cosmopolitan species as models for ecophysiological responses to global change: The common reed Phragmites australis . Frontiers in Plant Science, 8, 1833 https://doi.org/10.3389/fpls.2017.01833 PubMed DOI PMC
Endler, J. A. (1977). Geographic variation, speciation, and clines. Princeton, NJ: Princeton University Press. PubMed
Evanno, G. , Regnaut, S. , & Goudet, J. (2005). Detecting the number of clusters of individuals using the software STRUCTURE: A simulation study. Molecular Ecology, 14, 2611–2620. https://doi.org/10.1111/j.1365-294X.2005.02553.x PubMed DOI
Falush, D. , Stephens, M. , & Pritchard, J. K. (2007). Inference of population structure using multilocus genotype data: Dominant markers and null alleles. Molecular Ecology Notes, 7, 574–578. https://doi.org/10.1111/j.1471-8286.2007.01758.x PubMed DOI PMC
Finch, W. H. , & Frenc, B. F. (2015). Latent variable modeling with R. New York, NY: Routledge.
Grace, J. B. (2006). Structural equation modeling and natural systems. Cambridge, UK: Cambridge University Press; https://doi.org/10.1017/CBO9780511617799 DOI
Groeneveld, E. , Belzile, F. , & Lavoie, C. (2014). Sexual reproduction of Japanese knotweed (Fallopia japonica s.l.) at its northern distribution limit: New evidence of the effect of climate warming on an invasive species. American Journal of Botany, 101, 459–466. https://doi.org/10.3732/ajb.1300386 PubMed DOI
Guo, W.‐Y. , Lambertini, C. , Guo, X. , Li, X.‐Z. , Eller, F. , & Brix, H. (2016). Phenotypic traits of the Mediterranean Phragmites australis M1 lineage: Differences between the native and introduced ranges. Biological Invasions, 18, 2551–2561. https://doi.org/10.1007/s10530-016-1236-9 DOI
Guo, W.‐Y. , Lambertini, C. , Li, X.‐Z. , Meyerson, L. A. , & Brix, H. (2013). Invasion of Old World Phragmites australis in the New World: Precipitation and temperature patterns combined with human influences redesign the invasive niche. Global Chang Biology, 19, 3406–3422. https://doi.org/10.1111/gcb.12295 PubMed DOI
Guo, W.‐Y. , Lambertini, C. , Nguyen, L. X. , Li, X.‐Z. , & Brix, H. (2014). Preadaptation and post‐introduction evolution facilitate the invasion of Phragmites australis in North America. Ecology and Evolution, 4, 4567–4577. https://doi.org/10.1002/ece3.1286 PubMed DOI PMC
Hall, T. A. (1999). BioEdit: A user‐friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symposium Series, 41, 95–98.
Haslam, S. M. (1972). Phragmites communis Trin. (Arundo phragmites L.,? Phragmites australis (Cav.) Trin. ex Steudel). Journal of Ecology, 60, 585–610. https://doi.org/10.2307/2258363 DOI
Henry, P. , Le Lay, G. , Goudet, J. , Guisan, A. , Jahodová, Š. , & Besnard, G. (2009). Reduced genetic diversity, increased isolation and multiple introductions of invasive giant hogweed in the western Swiss Alps. Molecular Ecology, 18, 2819–2831. https://doi.org/10.1111/j.1365-294X.2009.04237.x PubMed DOI
Herrmann, D. , Poncet, B. N. , Manel, S. , Rioux, D. , Gielly, L. , Taberlet, P. , & Gugerli, F. (2010). Selection criteria for scoring amplified fragment length polymorphisms (AFLPs) positively affect the reliability of population genetic parameter estimates. Genome, 53, 302–310. https://doi.org/10.1139/G10-006 PubMed DOI
Hierro, J. L. , Maron, J. L. , & Callaway, R. M. (2005). A biogeographical approach to plant invasions: The importance of studying exotics in their introduced and native range. Journal of Ecology, 93, 5–15. https://doi.org/10.1111/j.0022-0477.2004.00953.x DOI
Hijmans, R. J. , Cameron, S. E. , Parra, J. L. , Jones, P. G. , & Jarvis, A. (2005). Very high resolution interpolated climate surfaces for global land areas. International Journal of Climatology, 25, 1965–1978. https://doi.org/10.1002/(ISSN)1097-0088 DOI
Hobbs, R. J. , & Huenneke, L. F. (1992). Disturbance, diversity, and invasion: Implications for conservation. Conservation Biology, 6, 324–337. https://doi.org/10.1046/j.1523-1739.1992.06030324.x DOI
Hollingsworth, M. L. , & Bailey, J. P. (2000). Evidence for massive clonal growth in the invasive weed Fallopia japonica (Japanese Knotweed). Botanical Journal of the Linnean Society, 133, 463–472. https://doi.org/10.1111/j.1095-8339.2000.tb01589.x DOI
Hu, L. , & Bentler, P. M. (1999). Cutoff criteria for fit indexes in covariance structure analysis: Conventional criteria versus new alternatives. Structural Equation Modeling, 6, 1–55. https://doi.org/10.1080/10705519909540118 DOI
Ingrouille, N. (1995). Historical ecology of British Flora. London, UK: Springer; https://doi.org/10.1007/978-94-011-1232-1 DOI
Jenkins, D. G. , Carey, M. , Czerniewska, J. , Fletcher, J. , Hether, T. , Jones, A. , … Tursi, R. (2010). A meta‐analysis of isolation by distance: Relic or reference standard for landscape genetics? Ecography, 33, 315–320. https://doi.org/10.1111/j.1600-0587.2010.06285.x DOI
Jodoin, Y. , Lavoie, C. , Villeneuve, P. , Theriault, M. , Beaulieu, J. , & Belzile, F. (2008). Highways as corridors and habitats for the invasive common reed Phragmites australis in Quebec, Canada. Journal of Applied Ecology, 45, 459–466. https://doi.org/10.1111/j.1365-2664.2007.01362.x DOI
Jombart, T. (2008). adegenet: A R package for the multivariate analysis of genetic markers. Bioinformatics, 24, 1403–1405. https://doi.org/10.1093/bioinformatics/btn129 PubMed DOI
Jombart, T. , Devillard, S. , & Balloux, F. (2010). Discriminant analysis of principal components: A new method for the analysis of genetically structured populations. BMC Genetics, 11, 94 https://doi.org/10.1186/1471-2156-11-94 PubMed DOI PMC
Kettenring, K. M. , & Mock, K. (2012). Genetic diversity, reproductive mode, and dispersal differ between the cryptic invader, Phragmites australis, and its native conspecific. Biological Invasions, 14, 2489–2504. https://doi.org/10.1007/s10530-012-0246-5 DOI
Kettenring, K. M. , & Whigham, D. F. (2009). Seed viability and seed dormancy of non‐native Phragmites australis in suburbanized and forested watersheds of the Chesapeake Bay, USA. Aquatic Botany, 91, 199–204. https://doi.org/10.1016/j.aquabot.2009.06.002 DOI
Kirk, H. , Paul, J. , Straka, J. , & Freeland, J. R. (2011). Long‐distance dispersal and high genetic diversity are implicated in the invasive spread of the common reed, Phragmites Australis (Poaceae), in northeastern North America. American Journal of Botany, 98, 1180–1190. https://doi.org/10.3732/ajb.1000278 PubMed DOI
Kirkpatrick, M. , & Barton, N. H. (1997). Evolution of a species’ range. The American Naturalist, 150, 1–23. https://doi.org/10.1086/286054 PubMed DOI
Kolbe, J. J. , Glor, R. E. , Schettino, L. R. , Lara, A. C. , Larson, A. , & Losos, J. B. (2004). Genetic variation increases during biological invasion by a Cuban lizard. Nature, 431, 177–181. https://doi.org/10.1038/nature02807 PubMed DOI
Kopelman, N. M. , Mayzel, J. , Jakobsson, M. , Rosenberg, N. A. , & Mayrose, I. (2015). CLUMPAK: A program for identifying clustering modes and packaging population structure inferences across K. Molecular Ecology Resources, 15, 1179–1191. https://doi.org/10.1111/1755-0998.12387 PubMed DOI PMC
Kriticos, D. J. , Jarošík, V. , & Ota, N. (2014). Extending the suite of BIOCLIM variables: A proposed registry system and case study using principal components analysis. Methods in Ecology and Evolution, 5, 956–960. https://doi.org/10.1111/2041-210X.12244 DOI
Kriticos, D. J. , Webber, B. L. , Leriche, A. , Ota, N. , Macadam, I. , Bathols, J. , & Scott, J. K. (2012). CliMond: Global high‐resolution historical and future scenario climate surfaces for bioclimatic modelling. Methods in Ecology and Evolution, 3, 53–64. https://doi.org/10.1111/j.2041-210X.2011.00134.x DOI
Kueffer, C. , Pyšek, P. , & Richardson, D. M. (2013). Integrative invasion science: Model systems, multi‐site studies, focused meta‐analysis and invasion syndromes. New Phytologist, 200, 615–633. https://doi.org/10.1111/nph.12415 PubMed DOI
Kulmatiski, A. , Beard, K. H. , Meyerson, L. A. , Gibson, J. R. , & Mock, K. E. (2011). Nonnative Phragmites australis invasion into Utah wetlands. Western North American Naturalist, 70, 541–552. https://doi.org/10.3398/064.070.0414 DOI
Lambertini, C. , Gustafsson, M. H. G. , Frydenberg, J. , Lissner, J. , Speranza, M. , & Brix, H. (2006). A phylogeographic study of the cosmopolitan genus Phragmites (Poaceae) based on AFLPs. Plant Systematics and Evolution, 258, 161–182. https://doi.org/10.1007/s00606-006-0412-2 DOI
Lambertini, C. , Mendelssohn, I. A. , Gustafsson, M. H. , Olesen, B. , Riis, T. , Sorrell, B. K. , & Brix, H. (2012). Tracing the origin of Gulf Coast Phragmites (Poaceae): A story of long‐distance dispersal and hybridization. American Journal of Botany, 99, 538–551. https://doi.org/10.3732/ajb.1100396 PubMed DOI
Lambertini, C. , Sorrell, B. K. , Riis, T. , Olesen, B. , & Brix, H. (2012). Exploring the borders of European Phragmites within a cosmopolitan genus. AoB Plants, 2012, pls020 https://doi.org/10.1093/aobpla/pls020 PubMed DOI PMC
LeBlanc, M. C. , De Blois, S. , & Lavoie, C. (2010). The invasion of a large lake by the Eurasian genotype of common reed: The influence of roads and residential construction. Journal of Great Lakes Research, 36, 554–560. https://doi.org/10.1016/j.jglr.2010.06.001 DOI
Lelong, B. , Lavoie, C. , Jodoin, Y. , & Belzile, F. (2007). Expansion pathways of the exotic common reed (Phragmites australis): A historical and genetic analysis. Diversity and Distributions, 13, 430–437. https://doi.org/10.1111/j.1472-4642.2007.00351.x DOI
Lin, T. , Klinkhamer, P. G. , & Vrieling, K. (2015). Parallel evolution in an invasive plant: Effect of herbivores on competitive ability and regrowth of Jacobaea vulgaris . Ecology Letters, 18, 668–676. https://doi.org/10.1111/ele.12445 PubMed DOI
McCormick, M. K. , Kettenring, K. M. , Baron, H. M. , & Whigham, D. F. (2010). Spread of invasive Phragmites australis in estuaries with differing degrees of development: Genetic patterns, allele effects and interpretation. Journal of Ecology, 98, 1369–1378. https://doi.org/10.1111/j.1365-2745.2010.01712.x DOI
Melchior, P. P. , & Weaver, R. (2016). Eurasian haplotype M Phragmites australis (Cav.) Trin. ex Steud., 1841 invasion in Minnesota, USA: A baseline for further monitoring in the upper Mississippi watershed. BioInvasions Records, 5, 59–65. https://doi.org/10.3391/bir DOI
Meyerson, L. A. , & Cronin, J. T. (2013). Evidence for multiple introductions of Phragmites australis to North America: Detection of a new non‐native haplotype. Biological Invasions, 15, 2605–2608. https://doi.org/10.1007/s10530-013-0491-2 DOI
Meyerson, L. A. , Cronin, J. T. , & Pyšek, P. (2016). Phragmites as a model organism for studying plant invasions. Biological Invasions, 18, 2421–2431. https://doi.org/10.1007/s10530-016-1132-3 DOI
Meyerson, L. A. , Lambertini, C. , McCormick, M. K. , & Whigham, D. F. (2012). Hybridization of common reed in North America? The answer is blowing in the wind. AoB Plants, 2012, pls022 https://doi.org/10.1093/aobpla/pls022 PubMed DOI PMC
Meyerson, L. A. , Pergl, J. , & Pyšek, P. (2014). Making waves about spreading weeds. Science, 344, 1236–1237. https://doi.org/10.1126/science.344.6189.1236-a PubMed DOI
Meyerson, L. A. , Saltonstall, K. , & Chambers, R. M. (2009). Phragmites australis in eastern North America: A historical and ecological perspective In Silliman B. R., Grosholz E. & Bertness M. D. (Eds.), Salt marshes under global siege (pp. 57–82). Berkeley, CA: University of California Press.
Meyerson, L. A. , Viola, D. , & Brown, R. N. (2010). Hybridization of invasive Phragmites australis with a native subspecies in North America. Biological Invasions, 12, 103–111. https://doi.org/10.1007/s10530-009-9434-3 DOI
Moore, P. D. (2004). Favoured aliens for the future. Nature, 427, 594 https://doi.org/10.1038/427594a PubMed DOI
Murray, K. , & Conner, M. M. (2009). Methods to quantify variable importance: Implications for the analysis of noisy ecological data. Ecology, 90, 1425 https://doi.org/10.1890/07-1929.1 PubMed DOI
Olea, P. P. , Mateo‐Tomas, P. , & de Frutos, A. (2010). Estimating and modelling bias of the hierarchical partitioning public‐domain software: Implications in environmental management and conservation. PLoS One, 5, e11698 https://doi.org/10.1371/journal.pone.0011698 PubMed DOI PMC
Peakall, R. , & Smouse, P. E. (2006). GENALEX 6: Genetic analysis in Excel. Population genetic software for teaching and research. Molecular Ecology Notes, 6, 288–295. https://doi.org/10.1111/j.1471-8286.2005.01155.x PubMed DOI PMC
Peakall, R. , & Smouse, P. E. (2012). GenAlEx 6.5: Genetic analysis in Excel. Population genetic software for teaching and research‐an update. Bioinformatics, 28, 2537–2539. https://doi.org/10.1093/bioinformatics/bts460 PubMed DOI PMC
Petanidou, T. , Godfree, R. C. , Song, D. S. , Kantsa, A. , Dupont, Y. L. , & Waser, N. M. (2012). Self‐compatibility and plant invasiveness: Comparing species in native and invasive ranges. Perspectives in Plant Ecology, Evolution and Systematics, 14, 3–12. https://doi.org/10.1016/j.ppees.2011.08.003 DOI
Pompanon, F. , Bonin, A. , Bellemain, E. , & Taberlet, P. (2005). Genotyping errors: Causes, consequences and solutions. Nature Reviews Genetics, 6, 847–859. https://doi.org/10.1038/nrg1707 PubMed DOI
Pritchard, J. K. , Stephens, M. , & Donnelly, P. (2000). Inference of population structure using multilocus genotype data. Genetics, 155, 945–959. PubMed PMC
Pyšek, P. , & Richardson, D. M. (2010). Invasive species, environmental change and management, and health. Annual Review of Environment and Resources, 35, 25–55. https://doi.org/10.1146/annurev-environ-033009-095548 DOI
Pyšek, P. , Skálová, H. , Čuda, J. , Guo, W.‐Y. , Suda, J. , Doleźel, J. , … Meyerson, L. A. (2018). A small genome separates native and invasive populations in an ecologically important cosmopolitan grass. Ecology, 99, 79–90. https://doi.org/10.1002/ecy.2068 PubMed DOI
R Core Team (2016). R: A language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing.
Rosseel, Y. (2012). lavaan: An R package for structural equation modeling. Journal of Statistical Software, 48, 1–36. https://doi.org/10.18637/jss.v048.i02 DOI
Saltonstall, K. (2001). A set of primers for amplification of noncoding regions of chloroplast DNA in the grasses. Molecular Ecology Notes, 1, 76–78. https://doi.org/10.1046/j.1471-8278.2001.00031.x DOI
Saltonstall, K. (2002). Cryptic invasion by a non‐native genotype of the common reed, Phragmites australis, into North America. Proceedings of the National Academy of Sciences of the United States of America, 99, 2445–2449. https://doi.org/10.1073/pnas.032477999 PubMed DOI PMC
Saltonstall, K. (2003). Microsatellite variation within and among North American lineages of Phragmites australis . Molecular Ecology, 12, 1689–1702. https://doi.org/10.1046/j.1365-294X.2003.01849.x PubMed DOI
Saltonstall, K. (2016). The naming of Phragmites haplotypes. Biological Invasions, 18, 2433–2441. https://doi.org/10.1007/s10530-016-1192-4 DOI
Saltonstall, K. , Castillo, H. E. , & Blossey, B. (2014). Confirmed field hybridization of native and introduced Phragmites australis (Poaceae) in North America. American Journal of Botany, 101, 211–215. https://doi.org/10.3732/ajb.1300298 PubMed DOI
Sanderson, E. W. , Jaiteh, M. , Levy, M. A. , Redford, K. H. , Wannebo, A. V. , & Woolmer, G. (2002). The human footprint and the last of the wild. BioScience, 52, 891–904. https://doi.org/10.1641/0006-3568(2002)052[0891:THFATL]2.0.CO;2 DOI
Sax, D. F. , Stachowicz, J. J. , Brown, J. H. , Bruno, J. F. , Dawson, M. N. , Gaines, S. D. , … Rice, W. R. (2007). Ecological and evolutionary insights from species invasions. Trends in Ecology & Evolution, 22, 465–471. https://doi.org/10.1016/j.tree.2007.06.009 PubMed DOI
Schermelleh‐Engel, K. , Moosbrugger, H. , & Müller, H. (2003). Evaluating the fit of structural equation models: Tests of significance and descriptive goodness‐of‐fit measure. Methods of Psychological Research Online, 8, 23–74.
Sexton, J. P. , Hangartner, S. B. , & Hoffmann, A. A. (2014). Genetic isolation by environment or distance: Which pattern of gene flow is most common? Evolution, 68, 1–15. https://doi.org/10.1111/evo.12258 PubMed DOI
Shafer, A. , & Wolf, J. B. (2013). Widespread evidence for incipient ecological speciation: A meta‐analysis of isolation‐by‐ecology. Ecology Letters, 16, 940–950. https://doi.org/10.1111/ele.12120 PubMed DOI
Sultan, S. E. , & Spencer, H. G. (2002). Metapopulation structure favors plasticity over local adaptation. The American Naturalist, 160, 271–283. https://doi.org/10.1086/341015 PubMed DOI
Taberlet, P. , Gielly, L. , Pautou, G. , & Bouvet, J. (1991). Universal primers for amplification of three non‐coding regions of chloroplast DNA. Plant Molecular Biology, 17, 1105–1109. https://doi.org/10.1007/BF00037152 PubMed DOI
Taylor, E. B. , & McPhail, J. D. (1999). Evolutionary history of an adaptive radiation in species pairs of threespine sticklebacks (Gasterosteus): Insights from mitochondrial DNA. Biological Journal of the Linnean Society, 66, 271–291. https://doi.org/10.1111/j.1095-8312.1999.tb01891.x DOI
Vilà, M. , Espinar, J. L. , Hejda, M. , Hulme, P. E. , Jarošík, V. , Maron, J. L. , … Pyšek, P. (2011). Ecological impacts of invasive alien plants: A meta‐analysis of their effects on species, communities and ecosystems. Ecology Letters, 14, 702–708. https://doi.org/10.1111/j.1461-0248.2011.01628.x PubMed DOI
Vos, P. , Hogers, R. , Bleeker, M. , Reijans, M. , van de Lee, T. , Hornes, M. , … Kuiper, M. (1995). AFLP: A new technique for DNA fingerprinting. Nucleic Acids Research, 23, 4407–4414. https://doi.org/10.1093/nar/23.21.4407 PubMed DOI PMC
Wang, I. J. (2013). Examining the full effects of landscape heterogeneity on spatial genetic variation: A multiple matrix regression approach for quantifying geographic and ecological isolation. Evolution, 67, 3403–3411. https://doi.org/10.1111/evo.12134 PubMed DOI
Wang, I. J. , & Bradburd, G. S. (2014). Isolation by environment. Molecular Ecology, 23, 5649–5662. https://doi.org/10.1111/mec.12938 PubMed DOI
Wang, I. J. , Glor, R. E. , & Losos, J. B. (2013). Quantifying the roles of ecology and geography in spatial genetic divergence. Ecology Letters, 16, 175–182. https://doi.org/10.1111/ele.12025 PubMed DOI
Wildlife Conservation Society – WCS, and Center for International Earth Science Information Network – CIESIN – Columbia University (2005). Last of the Wild Project, Version 2, 2005 (LWP‐2): Global human footprint dataset (geographic). Palisades, NY: NASA Socioeconomic Data and Applications Center (SEDAC) https://doi.org/10.7927/h4m61h5f DOI
Wright, S. (1943). Isolation by distance. Genetics, 28, 114–138. PubMed PMC
Wu, C. A. , Murray, L. A. , & Heffernan, K. E. (2015). Evidence for natural hybridization between native and introduced lineages of Phragmites australis in the Chesapeake Bay watershed. American Journal of Botany, 102, 805–812. https://doi.org/10.3732/ajb.1500018 PubMed DOI
Wu, Z. , Yu, D. , Li, X. , & Xu, X. (2016). Influence of geography and environment on patterns of genetic differentiation in a widespread submerged macrophyte, Eurasian watermilfoil (Myriophyllum spicatum L., Haloragaceae). Ecology and Evolution, 6, 460–468. https://doi.org/10.1002/ece3.1882 PubMed DOI PMC
Yu, S. , Zhang, Y.‐X. , Ren, Y.‐L. , & Sun, Q.‐X. (2013). Isolation and characterization of microsatellite loci for Phragmites australis . Journal of Genetics, 92, e89–e92. https://doi.org/10.1007/s12041-013-0278-3 PubMed DOI
Zhu, B. R. , Barrett, S. C. , Zhang, D. Y. , & Liao, W. J. (2017). Invasion genetics of Senecio vulgaris: Loss of genetic diversity characterizes the invasion of a selfing annual, despite multiple introductions. Biological Invasions, 19, 255–267. https://doi.org/10.1007/s10530-016-1277-0 DOI
Metabolomic Evenness Underlies Intraspecific Differences Among Lineages of a Wetland Grass
Dryad
10.5061/dryad.fj46f