Cholesterol Protects the Oxidized Lipid Bilayer from Water Injury: An All-Atom Molecular Dynamics Study

. 2018 Jun ; 251 (3) : 521-534. [epub] 20180317

Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid29550877

Grantová podpora
263410 FiDiPro - International
290974 European Research Council - International
SFB 1208 Deutsche Forschungsgemeinschaft - International

Odkazy

PubMed 29550877
DOI 10.1007/s00232-018-0028-9
PII: 10.1007/s00232-018-0028-9
Knihovny.cz E-zdroje

In an effort to delineate how cholesterol protects membrane structure under oxidative stress conditions, we monitored the changes to the structure of lipid bilayers comprising 30 mol% cholesterol and an increasing concentration of Class B oxidized 1-palmitoyl-2-oleoylphosphatidylcholine (POPC) glycerophospholipids, namely, 1-palmitoyl-2-(9'-oxo-nonanoyl)-sn-glycero-3-phosphocholine (PoxnoPC), and 1-palmitoyl-2-azelaoyl-sn-glycero-3-phosphocholine (PazePC), using atomistic molecular dynamics simulations. Increasing the content of oxidized phospholipids (oxPLs) from 0 to 60 mol% oxPL resulted in a characteristic reduction in bilayer thickness and increase in area per lipid, thereby increasing the exposure of the membrane hydrophobic region to water. However, cholesterol was observed to help reduce water injury by moving into the bilayer core and forming more hydrogen bonds with the oxPLs. Cholesterol also resists altering its tilt angle, helping to maintain membrane integrity. Water that enters the 1-nm-thick core region remains part of the bulk water on either side of the bilayer, with relatively few water molecules able to traverse through the bilayer. In cholesterol-rich membranes, the bilayer does not form pores at concentrations of 60 mol% oxPL as was shown in previous simulations in the absence of cholesterol.

Zobrazit více v PubMed

Annu Rev Physiol. 1990;52:487-504 PubMed

Am J Physiol. 1998 Jul;275(1 Pt 1):C1-24 PubMed

Biochim Biophys Acta. 2007 Jul;1772(7):718-36 PubMed

J Lipid Res. 1985 Sep;26(9):1015-35 PubMed

Curr Opin Lipidol. 2008 Jun;19(3):289-94 PubMed

Biophys J. 2011 Sep 21;101(6):1376-84 PubMed

Phys Rev A Gen Phys. 1985 Mar;31(3):1695-1697 PubMed

Biophys J. 2009 Apr 8;96(7):2734-43 PubMed

Biophys J. 2009 Oct 7;97(7):1941-51 PubMed

Chem Phys Lipids. 2016 Feb;195:12-20 PubMed

J Phys Chem B. 2014 May 1;118(17):4571-81 PubMed

Biophys J. 2003 Sep;85(3):1734-40 PubMed

Biochemistry. 1992 Nov 10;31(44):10901-7 PubMed

Langmuir. 2008 Apr 15;24(8):4157-60 PubMed

J Phys Chem Lett. 2015 Dec 17;6(24):4884-8 PubMed

Langmuir. 2010 May 4;26(9):6140-4 PubMed

Prog Lipid Res. 2003 Jul;42(4):318-43 PubMed

Biochim Biophys Acta. 2009 Feb;1788(2):371-9 PubMed

Chem Sci. 2016 Jan 1;7(1):489-498 PubMed

Biophys J. 2007 Dec 15;93(12):4225-36 PubMed

J Comput Aided Mol Des. 2013 Oct;27(10):845-58 PubMed

J Comput Chem. 2009 Sep;30(12):1952-8 PubMed

Int J Radiat Biol Relat Stud Phys Chem Med. 1979 Oct;36(4):325-34 PubMed

Free Radic Biol Med. 1997;23(3):419-25 PubMed

Langmuir. 2010 Nov 16;26(22):17322-9 PubMed

Int J Biomed Sci. 2008 Jun;4(2):89-96 PubMed

Biochim Biophys Acta. 2011 Sep;1808(9):2267-74 PubMed

Biol Pharm Bull. 2006 Aug;29(8):1542-6 PubMed

Soft Matter. 2014 Jan 28;10(4):639-47 PubMed

Biochim Biophys Acta. 1983 Mar 21;737(1):117-71 PubMed

Biochim Biophys Acta. 2012 Oct;1818(10):2388-402 PubMed

Biophys J. 2006 Jun 15;90(12):4488-99 PubMed

J Chem Theory Comput. 2008 Mar;4(3):435-47 PubMed

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...