Scoulerine affects microtubule structure, inhibits proliferation, arrests cell cycle and thus culminates in the apoptotic death of cancer cells
Jazyk angličtina Země Anglie, Velká Británie Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
29555944
PubMed Central
PMC5859271
DOI
10.1038/s41598-018-22862-0
PII: 10.1038/s41598-018-22862-0
Knihovny.cz E-zdroje
- MeSH
- aktivace enzymů účinky léků MeSH
- antitumorózní látky chemie farmakologie MeSH
- apoptóza účinky léků MeSH
- berberinové alkaloidy chemie farmakologie MeSH
- estery chemie MeSH
- fosforylace účinky léků MeSH
- kaspasy metabolismus MeSH
- kontrolní body buněčného cyklu účinky léků MeSH
- kyseliny karboxylové chemie MeSH
- lidé MeSH
- membránový potenciál mitochondrií účinky léků MeSH
- mikrotubuly účinky léků metabolismus MeSH
- nádorové buněčné linie MeSH
- proliferace buněk účinky léků MeSH
- signální transdukce účinky léků MeSH
- vztah mezi dávkou a účinkem léčiva MeSH
- zlomy DNA účinky léků MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- antitumorózní látky MeSH
- berberinové alkaloidy MeSH
- discretamine MeSH Prohlížeč
- estery MeSH
- kaspasy MeSH
- kyseliny karboxylové MeSH
Scoulerine is an isoquinoline alkaloid, which indicated promising suppression of cancer cells growth. However, the mode of action (MOA) remained unclear. Cytotoxic and antiproliferative properties were determined in this study. Scoulerine reduces the mitochondrial dehydrogenases activity of the evaluated leukemic cells with IC50 values ranging from 2.7 to 6.5 µM. The xCELLigence system revealed that scoulerine exerted potent antiproliferative activity in lung, ovarian and breast carcinoma cell lines. Jurkat and MOLT-4 leukemic cells treated with scoulerine were decreased in proliferation and viability. Scoulerine acted to inhibit proliferation through inducing G2 or M-phase cell cycle arrest, which correlates well with the observed breakdown of the microtubule network, increased Chk1 Ser345, Chk2 Thr68 and mitotic H3 Ser10 phosphorylation. Scoulerine was able to activate apoptosis, as determined by p53 upregulation, increase caspase activity, Annexin V and TUNEL labeling. Results highlight the potent antiproliferative and proapoptotic function of scoulerine in cancer cells caused by its ability to interfere with the microtubule elements of the cytoskeleton, checkpoint kinase signaling and p53 proteins. This is the first study of the mechanism of scoulerine at cellular and molecular level. Scoulerine is a potent antimitotic compound and that it merits further investigation as an anticancer drug.
Zobrazit více v PubMed
Bishayee A, Sethi G. Bioactive natural products in cancer prevention and therapy: Progress and promise. Seminars in Cancer Biology. 2016;40:1–3. doi: 10.1016/j.semcancer.2016.08.006. PubMed DOI
Eisenreich WJ, Hofner G, Bracher F. Alkaloids from Croton flavens L. and their affinities to GABA-receptors. Natural Product Research. 2003;17:437–440. doi: 10.1080/1478641031000111516. PubMed DOI
Wangchuk P, Keller PA, Pyne SG, Willis AC, Kamchonwongpaisan S. Antimalarial alkaloids from a Bhutanese traditional medicinal plant Corydalis dubia. Journal of Ethnopharmacology. 2012;143:310–313. doi: 10.1016/j.jep.2012.06.037. PubMed DOI
Chlebek J, et al. Acetylcholinesterase and butyrylcholinesterase inhibitory compounds from Corydalis cava (Fumariaceae) Natural Product Communications. 2011;6:607–610. PubMed
Chlebek J, et al. Application of BACE1 immobilized enzyme reactor for the characterization of multifunctional alkaloids from Corydalis cava (Fumariaceae) as Alzheimer’s disease targets. Fitoterapia. 2016;109:241–247. doi: 10.1016/j.fitote.2016.01.008. PubMed DOI
Hagel JM, et al. Transcriptome analysis of 20 taxonomically related benzylisoquinoline alkaloid-producing plants. BMC Plant Biology. 2015;15:227. doi: 10.1186/s12870-015-0596-0. PubMed DOI PMC
Hori K, Okano S, Sato F. Efficient microbial production of stylopine using a Pichia pastoris expression system. Scientific Reports. 2016;6:22201. doi: 10.1038/srep22201. PubMed DOI PMC
Ko FN, Yu SM, Su MJ, Wu YC, Teng CM. Pharmacological activity of (−)-discretamine, a novel vascular alpha-adrenoceptor and 5-hydroxytryptamine receptor antagonist, isolated from Fissistigma glaucescens. British Journal of Pharmacology. 1993;110:882–888. doi: 10.1111/j.1476-5381.1993.tb13895.x. PubMed DOI PMC
Ko FN, et al. (−)-Discretamine, a selective alpha 1D-adrenoceptor antagonist, isolated from Fissistigma glaucescens. British Journal of Pharmacology. 1994;112:1174–1180. doi: 10.1111/j.1476-5381.1994.tb13207.x. PubMed DOI PMC
Cheng X, Wang D, Jiang L, Yang D. DNA topoisomerase I inhibitory alkaloids from Corydalis saxicola. Chemistry & Biodiversity. 2008;5:1335–1344. doi: 10.1002/cbdv.200890121. PubMed DOI
Chlebek J, et al. Cytotoxicity of Naturally Occurring Isoquinoline Alkaloids of Different Structural Types. Natural Product Communications. 2016;6:753–756. PubMed
Menezes LR, et al. Cytotoxic Alkaloids from the Stem of Xylopia laevigata. Molecules. 2016;21:1–10. doi: 10.3390/molecules21070890. PubMed DOI PMC
Khamis S, et al. Phytochemistry and preliminary biological evaluation of Cyathostemma argenteum, a malaysian plant used traditionally for the treatment of breast cancer. Phytotherapy Research. 2004;18:507–510. doi: 10.1002/ptr.1318. PubMed DOI
Nagle A, Hur W, Gray NS. Antimitotic agents of natural origin. Current Drug Targets. 2006;3:305–326. doi: 10.2174/138945006776054933. PubMed DOI
Bailon-Moscoso N, Cevallos-Solorzano G, Romero-Benavides JC, Orellana MIR. Natural compounds as modulators of cell cycle arrest: application for anticancer chemotherapies. Current Genomics. 2017;18:106–131. doi: 10.2174/1389202917666160808125645. PubMed DOI PMC
Ronco C, Martin AR, Demange L, Benhida R. ATM, ATR, CHK1, CHK2 and WEE1 inhibitors in cancer and cancer stem cells. Medicinal Chemical Communications. 2017;8:295–319. doi: 10.1039/C6MD00439C. PubMed DOI PMC
Sherr CJ, Bartek J. Cell Cycle–Targeted Cancer Therapies. Annual Review of Cancer Biology. 2017;1:41–57. doi: 10.1146/annurev-cancerbio-040716-075628. DOI
Diamond A, Desgagné-Penix I. Metabolic engineering for the production of plant isoquinoline alkaloids. Plant Biotechnology Journal. 2016;6:1319–1328. doi: 10.1111/pbi.12494. PubMed DOI PMC
Lopus M, Panda D. The benzophenanthridine alkaloid sanguinarine perturbs microtubule assembly dynamics through tubulin binding. A possible mechanism for its antiproliferative activity. FEBS Journal. 2006;10:2139–2150. doi: 10.1111/j.1742-4658.2006.05227.x. PubMed DOI
Wang X, Tanaka M, Krstin S, Peixoto HS, Wink M. The interference of selected cytotoxic alkaloids with the cytoskeleton: an insight into their modes of action. Molecules. 2016;21:1–22. PubMed PMC
Saha SK, Khuda-Bukhsh AR. Berberine alters epigenetic modifications, disrupts microtubule network, and modulates HPV-18 E6–E7 oncoproteins by targeting p53 in cervical cancer cell HeLa: a mechanistic study including molecular docking. European Journal of Pharmacology. 2014;744:132–146. doi: 10.1016/j.ejphar.2014.09.048. PubMed DOI
Cedrón JC, Gutiérrez D, Flores N, Ravelo ÁG, Estévez-Braun A. Synthesis and antimalarial activity of new haemanthamine-type derivatives. Bioorganic & Medicinal Chemistry. 2012;20:5464–5472. doi: 10.1016/j.bmc.2012.07.036. PubMed DOI
Havelek R, et al. Differences in vanadocene dichloride and cisplatin effect on MOLT-4 leukemia and human peripheral blood mononuclear cells. Medicinal Chemistry. 2012;8:615–621. doi: 10.2174/157340612801216364. PubMed DOI
Darzynkiewicz Z, et al. Cytometry in cell necrobiology: analysis of apoptosis and accidental cell death (necrosis) Cytometry. 1997;27:1–20. doi: 10.1002/(SICI)1097-0320(19970101)27:1<1::AID-CYTO2>3.0.CO;2-L. PubMed DOI
Allen RT, Hunter WJ, III, Agrawal DK. Morphological and biochemical characterization and analysis of apoptosis. Journal of Pharmacological and Toxicological Methods. 1997;37:215–228. doi: 10.1016/S1056-8719(97)00033-6. PubMed DOI