Effect of Climate and Land Use on the Spatio-Temporal Variability of Tick-Borne Bacteria in Europe
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
29649132
PubMed Central
PMC5923774
DOI
10.3390/ijerph15040732
PII: ijerph15040732
Knihovny.cz E-zdroje
- Klíčová slova
- Anaplasma phagocytophilum, Borrelia burgdorferi sensu lato, Rickettsia spp., acarological hazard, density of infected nymphs, land use, normalized difference vegetation index,
- MeSH
- Anaplasma phagocytophilum růst a vývoj MeSH
- Borrelia burgdorferi růst a vývoj MeSH
- časoprostorová analýza * MeSH
- gramnegativní bakterie růst a vývoj MeSH
- klíště mikrobiologie MeSH
- nymfa MeSH
- podnebí * MeSH
- Rickettsia růst a vývoj MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Geografické názvy
- Evropa epidemiologie MeSH
The incidence of tick-borne diseases caused by Borrelia burgdorferi sensu lato, Anaplasma phagocytophilum and Rickettsia spp. has been rising in Europe in recent decades. Early pre-assessment of acarological hazard still represents a complex challenge. The aim of this study was to model Ixodes ricinus questing nymph density and its infection rate with B. burgdorferi s.l., A. phagocytophilum and Rickettsia spp. in five European countries (Italy, Germany, Czech Republic, Slovakia, Hungary) in various land cover types differing in use and anthropisation (agricultural, urban and natural) with climatic and environmental factors (Normalized Difference Vegetation Index (NDVI), Normalized Difference Water Index (NDWI), Land Surface Temperature (LST) and precipitation). We show that the relative abundance of questing nymphs was significantly associated with climatic conditions, such as higher values of NDVI recorded in the sampling period, while no differences were observed among land use categories. However, the density of infected nymphs (DIN) also depended on the pathogen considered and land use. These results contribute to a better understanding of the variation in acarological hazard for Ixodes ricinus transmitted pathogens in Central Europe and provide the basis for more focused ecological studies aimed at assessing the effect of land use in different sites on tick-host pathogens interaction.
Avia GIS Risschotlei 33 2980 Zoersel Belgium
Comparative Tropical Medicine and Parasitology Ludwig Maximilians Universität 80802 Munich Germany
Department of Anatomy Pavol Jozef Šafárik University 04001 Košice Slovakia
Department of Parasitology and Zoology University of Veterinary Medicine 1078 Budapest Hungary
Institute of Infectology Friedrich Loeffler Institut 17493 Greifswald Germany
Institute of Macromolecular Chemistry CAS 16206 Prague 6 Czech Republic
Institute of Zoology Slovak Academy of Sciences 84506 Bratislava Slovakia
Mundialis GmbH and Co KG 53111 Bonn Germany
Parasitological Institute Slovak Academy of Sciences 04001 Košice Slovakia
Zobrazit více v PubMed
Ellis E.C., Ramankutty N. Putting People in the Map: Anthropogenic Biomes of the World. Front. Ecol. Environ. 2008;6:439–447. doi: 10.1890/070062. DOI
Bradley C.A., Altizer S. Urbanization and the Ecology of Wildlife Diseases. Trends Ecol. Evol. 2007;22:95–102. doi: 10.1016/j.tree.2006.11.001. PubMed DOI PMC
United Nations, Department of Economic and Social Affairs, Population Division (2014) World Urbanization Prospects: The 2014 Revision, Highlights (ST/ESA/SER.A/352) United Nations; New York, NY, USA: 2014.
Allen T., Murray K.A., Zambrana-Torrelio C., Morse S.S., Rondinini C., Di Marco M., Breit N., Olival K.J., Daszak P. Global Hotspots and Correlates of Emerging Zoonotic Diseases. Nat. Commun. 2017;8:1124. doi: 10.1038/s41467-017-00923-8. PubMed DOI PMC
Medlock J.M., Hansford K.M., Bormane A., Derdakova M., Estrada-Peña A., George J.-C., Golovljova I., Jaenson T.G.T., Jensen J.-K., Jensen P.M., et al. Driving Forces for Changes in Geographical Distribution of Ixodes ricinus Ticks in Europe. Parasites Vectors. 2013;6:1. doi: 10.1186/1756-3305-6-1. PubMed DOI PMC
Heyman P., Cochez C., Hofhuis A., van der Giessen J., Sprong H., Porter S.R., Losson B., Saegerman C., Donoso-Mantke O., Niedrig M., et al. A Clear and Present Danger: Tick-Borne Diseases in Europe. Expert Rev. Anti-Infect. Ther. 2010;8:33–50. doi: 10.1586/eri.09.118. PubMed DOI
Rizzoli A., Hauffe H., Carpi G., Vourc H.G., Neteler M., Rosa R. Lyme Borreliosis in Europe. Euro Surveill. 2011;16 doi: 10.2807/ese.16.27.19906-en. PubMed DOI
Brouqui P., Parola P., Fournier P.E., Raoult D. Spotted Fever Rickettsioses in Southern and Eastern Europe. FEMS Immunol. Med. Microbiol. 2007;49:2–12. doi: 10.1111/j.1574-695X.2006.00138.x. PubMed DOI
Takken W., van Vliet A.J.H., Verhulst N.O., Jacobs F.H.H., Gassner F., Hartemink N., Mulder S., Sprong H. Acarological Risk of Borrelia burgdorferi Sensu Lato Infections across Space and Time in The Netherlands. Vector Borne Zoonotic Dis. 2017;17:99–107. doi: 10.1089/vbz.2015.1933. PubMed DOI
Mannelli A., Boggiatto G., Grego E., Cinco M., Murgia R., Stefanelli S., De Meneghi D., Rosati S. Acarological Risk of Exposure to Agents of Tick-Borne Zoonoses in the First Recognized Italian Focus of Lyme Borreliosis. Epidemiol. Infect. 2003;131:1139–1147. doi: 10.1017/S0950268803001328. PubMed DOI PMC
Randolph S.E., EDEN-TBD Sub-Project Team Human Activities Predominate in Determining Changing Incidence of Tick-Borne Encephalitis in Europe. Euro. Surveill. 2010;15:24–31. doi: 10.2807/ese.15.27.19606-en. PubMed DOI
Cagnacci F., Bolzoni L., Rosà R., Carpi G., Hauffe H.C., Valent M., Tagliapietra V., Kazimirova M., Koci J., Stanko M., et al. Effects of Deer Density on Tick Infestation of Rodents and the Hazard of Tick-Borne Encephalitis. I: Empirical Assessment. Int. J. Parasitol. 2012;42:365–372. doi: 10.1016/j.ijpara.2012.02.012. PubMed DOI
Ostfeld R.S., Levi T., Jolles A.E., Martin L.B., Hosseini P.R., Keesing F. Life History and Demographic Drivers of Reservoir Competence for Three Tick-Borne Zoonotic Pathogens. PLoS ONE. 2014;9:e107387. doi: 10.1371/journal.pone.0107387. PubMed DOI PMC
Ruiz-Fons F., Fernández-de-Mera I.G., Acevedo P., Gortázar C., de la Fuente J. Factors Driving the Abundance of Ixodes ricinus Ticks and the Prevalence of Zoonotic I. Ricinus-Borne Pathogens in Natural Foci. Appl. Environ. Microbiol. 2012;78:2669–2676. doi: 10.1128/AEM.06564-11. PubMed DOI PMC
Estrada-Peña A., Estrada-Sánchez A., de la Fuente J. A Global Set of Fourier-Transformed Remotely Sensed Covariates for the Description of Abiotic Niche in Epidemiological Studies of Tick Vector Species. Parasites Vectors. 2014;7:302. doi: 10.1186/1756-3305-7-302. PubMed DOI PMC
Daniel M., Vráblík T., Valter J., Kríz B., Danielová V. The TICKPRO Computer Program for Predicting Ixodes ricinus Host-Seeking Activity and the Warning System Published on Websites. Cent. Eur. J. Public Health. 2010;18:230–236. PubMed
Estrada-Peña A. Geostatistics and Remote Sensing Using NOAA-AVHRR Satellite Imagery as Predictive Tools in Tick Distribution and Habitat Suitability Estimations for Boophilus microplus (Acari: Ixodidae) in South America. National Oceanographic and Atmosphere Administration-Advanced Very High Resolution Radiometer. Vet. Parasitol. 1999;81:73–82. PubMed
Dobson A.D.M., Finnie T.J.R., Randolph S.E. A Modified Matrix Model to Describe the Seasonal Population Ecology of the European Tick Ixodes ricinus. J. Appl. Ecol. 2011;48:1017–1028. doi: 10.1111/j.1365-2664.2011.02003.x. DOI
Palniyandi M. The Role of Remote Sensing and GIS for Spatial Prediction of Vector-Borne Diseases Transmission: A Systematic Review. J. Vector Borne Dis. 2012;49:197–204. PubMed
Estrada-Peña A., Estrada-Sánchez D. Deconstructing Ixodes ricinus: A Partial Matrix Model Allowing Mapping of Tick Development, Mortality and Activity Rates. Med. Vet. Entomol. 2014;28:35–49. doi: 10.1111/mve.12009. PubMed DOI
Estrada-Peña A., Estrada-Sánchez A., Estrada-Sánchez D. Methodological Caveats in the Environmental Modelling and Projections of Climate Niche for Ticks, with Examples for Ixodes ricinus (Ixodidae) Vet. Parasitol. 2015;208:14–25. doi: 10.1016/j.vetpar.2014.12.016. PubMed DOI
Estrada-Peña A., Alexander N., Wint G.R.W. Perspectives on Modelling the Distribution of Ticks for Large Areas: So Far so Good? Parasites Vectors. 2016;9:179. doi: 10.1186/s13071-016-1474-9. PubMed DOI PMC
CLC Illustrated Nomenclature Guidelines. [(accessed on 27 February 2018)]; Available online: https://land.copernicus.eu/user-corner/technical-library/corine-land-cover-nomenclature-guidelines/html/
Global Multi-Resolution Terrain Elevation Data 2010 (GMTED2010) [(accessed on 27 February 2018)]; Available online: https://lta.cr.usgs.gov/GMTED2010.
Filippova N.A. Ixodid Ticks of the Subfamily Ixodinae. Volume IV Nauka Leningrad; Moscow, Russia: 1977. Fauna USSR-Acarina.
Siuda K. Kleszcze Polski (Acari: Ixodida) Systematyka i Rozmieszczenie. Polskie Towarzystwo Parazytologiczne; Warszawa, Poland: 1993.
Hillyard P.D. Ticks of North-West Europe. The Dorset Press; Dorchester, UK: 1996.
Estrada-Pena A., Bouattour A., Camicas J.-L., Walker A.R. Ticks of Domestic Animals in the Mediterranean Region. A Guide to Identification of Species. University of Zaragoza; Zaragoza, Spain: 2004.
Rijpkema S.G., Molkenboer M.J., Schouls L.M., Jongejan F., Schellekens J.F. Simultaneous Detection and Genotyping of Three Genomic Groups of Borrelia burgdorferi Sensu Lato in Dutch Ixodes ricinus Ticks by Characterization of the Amplified Intergenic Spacer Region between 5S and 23S rRNA Genes. J. Clin. Microbiol. 1995;33:3091–3095. PubMed PMC
Massung R.F., Slater K., Owens J.H., Nicholson W.L., Mather T.N., Solberg V.B., Olson J.G. Nested PCR Assay for Detection of Granulocytic Ehrlichiae. J. Clin. Microbiol. 1998;36:1090–1095. PubMed PMC
Reye A.L., Stegniy V., Mishaeva N.P., Velhin S., Hübschen J.M., Ignatyev G., Muller C.P. Prevalence of Tick-Borne Pathogens in Ixodes ricinus and Dermacentor reticulatus Ticks from Different Geographical Locations in Belarus. PLoS ONE. 2013;8:e54476. doi: 10.1371/journal.pone.0054476. PubMed DOI PMC
Baráková I., Derdáková M., Selyemová D., Chvostáč M., Špitalská E., Rosso F., Collini M., Rosà R., Tagliapietra V., Girardi M., et al. Tick-Borne Pathogens and Their Reservoir Hosts in Northern Italy. Ticks Tick-Borne Dis. 2017;9:164–170. doi: 10.1016/j.ttbdis.2017.08.012. PubMed DOI
Derdakova M., Beati L., Pet’ko B., Stanko M., Fish D. Genetic Variability within Borrelia burgdorferi Sensu Lato Genospecies Established by PCR-Single-Strand Conformation Polymorphism Analysis of the rrfA-rrlB Intergenic Spacer in Ixodes ricinus Ticks from the Czech Republic. Appl. Environ. Microbiol. 2003;69:509–516. doi: 10.1128/AEM.69.1.509-516.2003. PubMed DOI PMC
Courtney J.W., Kostelnik L.M., Zeidner N.S., Massung R.F. Multiplex Real-Time PCR for Detection of Anaplasma phagocytophilum and Borrelia burgdorferi. J. Clin. Microbiol. 2004;42:3164–3168. doi: 10.1128/JCM.42.7.3164-3168.2004. PubMed DOI PMC
Regnery R.L., Spruill C.L., Plikaytis B.D. Genotypic Identification of Rickettsiae and Estimation of Intraspecies Sequence Divergence for Portions of Two Rickettsial Genes. J. Bacteriol. 1991;173:1576–1589. doi: 10.1128/jb.173.5.1576-1589.1991. PubMed DOI PMC
Overzier E., Pfister K., Thiel C., Herb I., Mahling M., Silaghi C. Diversity of Babesia and Rickettsia Species in Questing Ixodes ricinus: A Longitudinal Study in Urban, Pasture, and Natural Habitats. Vector Borne Zoonotic Dis. 2013;13:559–564. doi: 10.1089/vbz.2012.1278. PubMed DOI PMC
Overzier E., Pfister K., Thiel C., Herb I., Mahling M., Silaghi C. Anaplasma phagocytophilum in Questing Ixodes ricinus Ticks: Comparison of Prevalences and Partial 16S rRNA Gene Variants in Urban, Pasture, and Natural Habitats. Appl. Environ. Microbiol. 2013;79:1730–1734. doi: 10.1128/AEM.03300-12. PubMed DOI PMC
Blaňarová L., Stanko M., Carpi G., Miklisová D., Víchová B., Mošanský L., Bona M., Derdáková M. Distinct Anaplasma phagocytophilum Genotypes Associated with Ixodes Trianguliceps Ticks and Rodents in Central Europe. Ticks Tick-Borne Dis. 2014;5:928–938. doi: 10.1016/j.ttbdis.2014.07.012. PubMed DOI
Svitálková Z., Haruštiaková D., Mahríková L., Berthová L., Slovák M., Kocianová E., Kazimírová M. Anaplasma phagocytophilum Prevalence in Ticks and Rodents in an Urban and Natural Habitat in South-Western Slovakia. Parasites Vectors. 2015;8:276. doi: 10.1186/s13071-015-0880-8. PubMed DOI PMC
Špitalská E., Stanko M., Mošanský L., Kraljik J., Miklisová D., Mahríková L., Bona M., Kazimírová M. Seasonal Analysis of Rickettsia Species in Ticks in an Agricultural Site of Slovakia. Exp. Appl. Acarol. 2016;68:315–324. doi: 10.1007/s10493-015-9941-0. PubMed DOI
Minichová L., Hamšíková Z., Mahríková L., Slovák M., Kocianová E., Kazimírová M., Škultéty Ľ., Štefanidesová K., Špitalská E. Molecular Evidence of Rickettsia spp. in Ixodid Ticks and Rodents in Suburban, Natural and Rural Habitats in Slovakia. Parasites Vectors. 2017;10:158. doi: 10.1186/s13071-017-2094-8. PubMed DOI PMC
Venclíková K., Mendel J., Betášová L., Blažejová H., Jedličková P., Straková P., Hubálek Z., Rudolf I. Neglected Tick-Borne Pathogens in the Czech Republic, 2011–2014. Ticks Tick-Borne Dis. 2016;7:107–112. doi: 10.1016/j.ttbdis.2015.09.004. PubMed DOI
Hornok S., Meli M.L., Gönczi E., Halász E., Takács N., Farkas R., Hofmann-Lehmann R. Occurrence of Ticks and Prevalence of Anaplasma phagocytophilum and Borrelia burgdorferi s.l. in Three Types of Urban Biotopes: Forests, Parks and Cemeteries. Ticks Tick-Borne Dis. 2014;5:785–789. doi: 10.1016/j.ttbdis.2014.05.010. PubMed DOI
Schulze T.L., Jordan R.A. Meteorologically Mediated Diurnal Questing of Ixodes scapularis and Amblyomma americanum (Acari: Ixodidae) Nymphs. J. Med. Entomol. 2003;40:395–402. doi: 10.1603/0022-2585-40.4.395. PubMed DOI
Perret J.-L., Rais O., Gern L. Influence of Climate on the Proportion of Ixodes ricinus Nymphs and Adults Questing in a Tick Population. J. Med. Entomol. 2004;41:361–365. doi: 10.1603/0022-2585-41.3.361. PubMed DOI
Barrios J.M., Verstraeten W.W., Maes P., Clement J., Aerts J.M., Farifteh J., Lagrou K., Van Ranst M., Coppin P. Remotely Sensed Vegetation Moisture as Explanatory Variable of Lyme Borreliosis Incidence. Int. J. Appl. Earth Obs. Geoinf. 2012;18:1–12. doi: 10.1016/j.jag.2012.01.023. DOI
Neteler M., Hamish Bowman M., Landa M., Metz M. GRASS GIS: A Multi-Purpose Open Source GIS. Environ. Model. Softw. 2012;31:124–130. doi: 10.1016/j.envsoft.2011.11.014. DOI
Metz M., Rocchini D., Neteler M. Surface Temperatures at the Continental Scale: Tracking Changes with Remote Sensing at Unprecedented Detail. Remote Sens. 2014;6:3822–3840. doi: 10.3390/rs6053822. DOI
Rosà R., Marini G., Bolzoni L., Neteler M., Metz M., Delucchi L., Chadwick E.A., Balbo L., Mosca A., Giacobini M., et al. Early Warning of West Nile Virus Mosquito Vector: Climate and Land Use Models Successfully Explain Phenology and Abundance of Culex Pipiens Mosquitoes in North-Western Italy. Parasites Vectors. 2014;7:269. doi: 10.1186/1756-3305-7-269. PubMed DOI PMC
Randolph S.E., Green R.M., Peacey M.F., Rogers D.J. Seasonal Synchrony: The Key to Tick-Borne Encephalitis Foci Identified by Satellite Data. (Pt 1)Parasitology. 2000;121:15–23. doi: 10.1017/S0031182099006083. PubMed DOI
The European Climate Assessment & Dataset. [(accessed on 27 February 2018)]; Available online: https://www.knmi.nl/kennis-en-datacentrum/project/the-european-climate-assessment-dataset.
Haylock M.R., Hofstra N., Klein A.M., Klok E.J., Jones P.D., New M. A European Daily High-Resolution Gridded Data Set of Surface Temperature and Precipitation for 1950–2006. J. Geophys. Res. 2008;113 doi: 10.1029/2008JD010201. DOI
Roerink G.J., Menenti M., Verhoef W. Reconstructing Cloudfree NDVI Composites Using Fourier Analysis of Time Series. Int. J. Remote Sens. 2000;21:1911–1917. doi: 10.1080/014311600209814. DOI
R: The R Project for Statistical Computing. [(accessed on 12 October 2017)]; Available online: https://www.R-project.org/
IJERPH_Rosa_2018. [(accessed on 27 February 2018)]; Available online: www.geodati.fmach.it/IJERPH_Rosa_2018.
Brooks M.E., Kristensen K., van Benthem K.J., Magnusson A., Berg C.W., Nielsen A., Skaug H.J., Maechler M., Bolker B.M. Modeling Zero-Inflated Count Data with glmmTMB. bioRxiv. 2017 doi: 10.1101/132753. DOI
Bates D., Mächler M., Bolker B., Walker S. Fitting Linear Mixed-Effects Models Usinglme4. J. Stat. Softw. 2015;67 doi: 10.18637/jss.v067.i01. DOI
Pan Y., Jackson R.T. Ethnic Difference in the Relationship between Acute Inflammation and Serum Ferritin in US Adult Males. Epidemiol. Infect. 2008;136:421–431. doi: 10.1017/S095026880700831X. PubMed DOI PMC
Nakagawa S., Schielzeth H. A general and simple method for obtaining R2 from Generalized Linear Mixed-effects Models. Methods Ecol. Evol. 2013;4:133–142. doi: 10.1111/j.2041-210x.2012.00261.x. DOI
Trout Fryxell R.T., Moore J.E., Collins M.D., Kwon Y., Jean-Philippe S.R., Schaeffer S.M., Odoi A., Kennedy M., Houston A.E. Habitat and Vegetation Variables Are Not Enough When Predicting Tick Populations in the Southeastern United States. PLoS ONE. 2015;10:e0144092. doi: 10.1371/journal.pone.0144092. PubMed DOI PMC
Benedetti R., Rossini P. On the Use of NDVI Profiles as a Tool for Agricultural Statistics: The Case Study of Wheat Yield Estimate and Forecast in Emilia Romagna. Remote Sens. Environ. 1993;45:311–326. doi: 10.1016/0034-4257(93)90113-C. DOI
Hubálek Z., Halouzka J., Juricová Z. Host-Seeking Activity of Ixodid Ticks in Relation to Weather Variables. J. Vector Ecol. 2003;28:159–165. PubMed
Alonso-Carné J., García-Martín A., Estrada-Peña A. Assessing the Statistical Relationships among Water-Derived Climate Variables, Rainfall, and Remotely Sensed Features of Vegetation: Implications for Evaluating the Habitat of Ticks. Exp. Appl. Acarol. 2015;65:107–124. doi: 10.1007/s10493-014-9849-0. PubMed DOI
Bisanzio D., Amore G., Ragagli C., Tomassone L., Bertolotti L., Mannelli A. Temporal Variations in the Usefulness of Normalized Difference Vegetation Index as a Predictor for Ixodes ricinus (Acari: Ixodidae) in a Borrelia Lusitaniae Focus in Tuscany, Central Italy. J. Med. Entomol. 2008;45:547–555. doi: 10.1093/jmedent/45.3.547. PubMed DOI
Olwoch J.M., Rautenbach C.D.W., Erasmus B.F.N., Engelbrecht F.A., Van Jaarsveld A.S. Simulating Tick Distributions over Sub-Saharan Africa: The Use of Observed and Simulated Climate Surfaces. J. Biogeogr. 2003;30:1221–1232. doi: 10.1046/j.1365-2699.2003.00913.x. DOI
Adejinmi J.O. Effect of Water Flooding on the Oviposition Capacity of Engorged Adult Females and Hatchability of Eggs of Dog Ticks: Rhipicephalus Sanguineus and Haemaphysalis Leachi Leachi. J. Parasitol. Res. 2011;2011:824162. doi: 10.1155/2011/824162. PubMed DOI PMC
Sutherst R.W. An Experimental Investigation into the Effects of Flooding on the Ixodid Tick Boophilus microplus (Canestrini) Oecologia. 1971;6:208–222. doi: 10.1007/BF00344915. PubMed DOI
Rosef O., Paulauskas A., Radzijevskaja J. Prevalence of Borrelia burgdorferi Sensu Lato and Anaplasma phagocytophilum in Questing Ixodes ricinus Ticks in Relation to the Density of Wild Cervids. Acta Vet. Scand. 2009;51:47. doi: 10.1186/1751-0147-51-47. PubMed DOI PMC
Rosà R., Pugliese A., Norman R., Hudson P.J. Thresholds for Disease Persistence in Models for Tick-Borne Infections Including Non-Viraemic Transmission, Extended Feeding and Tick Aggregation. J. Theor. Biol. 2003;224:359–376. doi: 10.1016/S0022-5193(03)00173-5. PubMed DOI
Kazimírová M., Hamšíková Z., Kocianová E., Marini G., Mojšová M., Mahríková L., Berthová L., Slovák M., Rosá R. Relative Density of Host-Seeking Ticks in Different Habitat Types of South-Western Slovakia. Exp. Appl. Acarol. 2016;69:205–224. doi: 10.1007/s10493-016-0025-6. PubMed DOI
Földvári G., Jahfari S., Rigó K., Jablonszky M., Szekeres S., Majoros G., Tóth M., Molnár V., Coipan E.C., Sprong H. Candidatus Neoehrlichia Mikurensis and Anaplasma phagocytophilumin Urban Hedgehogs. Emerg. Infect. Dis. 2014;20:496–498. doi: 10.3201/eid2003.130935. PubMed DOI PMC
Rizzoli A.P., Silaghi C., Obiegala A., Rudolf I., Hubálek Z., Földvári G., Plantard O., Vayssier-Taussat M., Bonnet S., Špitalská E., et al. Ixodes ricinus and its transmitted pathogens in urban and peri-urban areas in Europe: New hazards and relevance for public health. Front. Public Health. 2014;2:1–26. doi: 10.3389/fpubh.2014.00251. PubMed DOI PMC
Raoult D., Roux V. Rickettsioses as Paradigms of New or Emerging Infectious Diseases. Clin. Microbiol. Rev. 1997;10:694–719. doi: 10.1016/j.ijid.2014.03.561. PubMed DOI PMC