Model of Risk of Exposure to Lyme Borreliosis and Tick-Borne Encephalitis Virus-Infected Ticks in the Border Area of the Czech Republic (South Bohemia) and Germany (Lower Bavaria and Upper Palatinate)

. 2019 Apr 02 ; 16 (7) : . [epub] 20190402

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid30986900

In Europe, Lyme borreliosis (LB) and tick-borne encephalitis (TBE) are the two vector-borne diseases with the largest impact on human health. Based on data on the density of host-seeking Ixodes ricinus ticks and pathogen prevalence and using a variety of environmental data, we have created an acarological risk model for a region where both diseases are endemic (Czech Republic-South Bohemia and Germany-Lower Bavaria, Upper Palatinate). The data on tick density were acquired by flagging 50 sampling sites three times in a single season. Prevalence of the causative agents of LB and TBE was determined. Data on environmental variables (e.g., altitude, vegetation cover, NDVI, land surface temperature) were obtained from various sources and processed using geographical information systems. Generalized linear models were used to estimate tick density, probability of tick infection, and density of infected ticks for the whole area. A significantly higher incidence of human TBE cases was recorded in South Bohemia compared to Bavarian regions, which correlated with a lower tick density in Bavaria. However, the differences in pathogen prevalence rates were not significant. The model outputs were made available to the public in the form of risk maps, indicating the distribution of tick-borne disease risk in space.

Zobrazit více v PubMed

Charrel R.N., Attoui H., Butenko A.M., Clegg J.C., Deubel V., Frolova T.V., Gould E.A., Gritsun T.S., Heinz F.X., Labuda M., et al. Tick-borne virus diseases of human interest in Europe. Clin. Microbiol. Infect. 2004;10:1040–1055. doi: 10.1111/j.1469-0691.2004.01022.x. PubMed DOI

Parola P., Raoult D. Tick-borne bacterial diseases emerging in Europe. Clin. Microbiol. Infect. 2001;7:80–83. doi: 10.1046/j.1469-0691.2001.00200.x. PubMed DOI

Eisen R.J., Eisen L., Girard Y.A., Fedorova N., Mun J., Slikas B., Leonhard S., Kitron U., Lane R.S. A spatially-explicit model of acarological risk of exposure to Borrelia burgdorferi-infected Ixodes pacificus nymphs in northwestern California based on woodland type, temperature, and water vapor. Ticks Tick-Borne Dis. 2010;1:35–43. doi: 10.1016/j.ttbdis.2009.12.002. PubMed DOI PMC

Materna J., Daniel M., Metelka L., Harčarik J. The vertical distribution, density and the development of the tick Ixodes ricinus in mountain areas influenced by climate changes (The Krkonoše Mts., Czech Republic) Int. J. Med. Microbiol. 2008;298(Suppl. 1):25–37. doi: 10.1016/j.ijmm.2008.05.004. DOI

Perret J.-L., Rais O., Gern L. Influence of climate on the proportion of Ixodes ricinus nymphs and adults questing in a tick population. J. Med. Entomol. 2004;41:361–365. doi: 10.1603/0022-2585-41.3.361. PubMed DOI

Rizzoli A., Merler S., Furlanello C., Genchi C. Geographical information systems and bootstrap aggregation (bagging) of tree-based classifiers for Lyme disease risk prediction in Trentino, Italian Alps. J. Med. Entomol. 2002;39:485–492. doi: 10.1603/0022-2585-39.3.485. PubMed DOI

Bolzoni L., Rosa R., Cagnacci F., Rizzoli A. Effect of deer density on tick infestation of rodents and the hazard of tick-borne encephalitis. II: Population and infection models. Int. J. Parasitol. 2012;42:373–381. doi: 10.1016/j.ijpara.2012.02.006. PubMed DOI

Dizij A., Kurtenbach K. Clethrionomys glareolus, but not Apodemus flavicollis, acquires resistance to Ixodes ricinus L., the main European vector of Borrelia burgdorferi. Parasit. Immunol. 1995;17:177–183. doi: 10.1111/j.1365-3024.1995.tb00887.x. PubMed DOI

Ostfeld R.S., Levi T., Jolles A.E., Martin L.B., Hosseini P.R., Keesing F. Life history and demographic drivers of reservoir competence for three tick-borne zoonotic pathogens. PLoS ONE. 2014;9:e107387. doi: 10.1371/journal.pone.0107387. PubMed DOI PMC

Eisen R.J., Eisen L. Spatial modeling of human risk of exposure to vector-borne pathogens based on epidemiological versus arthropod vector data. J. Med. Entomol. 2008;45:181–192. doi: 10.1093/jmedent/45.2.181. PubMed DOI

Randolph S.E. The shifting landscape of tick-borne zoonoses: Tick-borne encephalitis and Lyme borreliosis in Europe. Philos. Trans. R. Soc. Lond. B Biol. Sci. 2001;356:1045–1056. doi: 10.1098/rstb.2001.0893. PubMed DOI PMC

Daniel M., Kolar J., Zeman P., Pavelka K., Sadlo J. Predictive map of Ixodes ricinus high-incidence habitats and a tick-borne encephalitis risk assessment using satellite data. Exp. Appl. Acarol. 1998;22:417–433. doi: 10.1023/A:1006030827216. PubMed DOI

Eisen R.J., Eisen L., Lane R.S. Predicting density of Ixodes pacificus nymphs in dense woodlands in Mendocino County, California, based on geographic information systems and remote sensing versus field-derived data. Am. J. Trop. Med. Hyg. 2006;74:632–640. doi: 10.4269/ajtmh.2006.74.632. PubMed DOI

Ripoche M., Lindsay L., Ludwig A., Ogden N., Thivierge K., Leighton P., Ripoche M., Lindsay L.R., Ludwig A., Ogden N.H., et al. Multi-scale clustering of Lyme disease risk at the expanding leading edge of the range of Ixodes scapularis in Canada. Int. J. Environ. Res. Public Health. 2018;15:603. doi: 10.3390/ijerph15040603. PubMed DOI PMC

Rosa R., Andreo V., Tagliapietra V., Baráková I., Arnoldi D., Hauffe H., Manica M., Rosso F., Blaňarová L., Bona M., et al. Effect of climate and land use on the spatio-temporal variability of tick-borne bacteria in Europe. Int. J. Environ. Res. Public Health. 2018;15:732. doi: 10.3390/ijerph15040732. PubMed DOI PMC

Vourc’h G., Abrial D., Bord S., Jacquot M., Masséglia S., Poux V., Pisanu B., Bailly X., Chapuis J.-L. Mapping human risk of infection with Borrelia burgdorferi sensu lato, the agent of Lyme borreliosis, in a periurban forest in France. Ticks Tick-Borne Dis. 2016;7:644–652. doi: 10.1016/j.ttbdis.2016.02.008. PubMed DOI

Zeimes C.B., Olsson G.E., Hjertqvist M., Vanwambeke S.O. Shaping zoonosis risk: Landscape ecology vs. landscape attractiveness for people, the case of tick-borne encephalitis in Sweden. Parasit. Vectors. 2014;7:370. doi: 10.1186/1756-3305-7-370. PubMed DOI PMC

Honig V., Svec P., Halas P., Vavruskova Z., Tykalova H., Kilian P., Vetiskova V., Dornakova V., Sterbova J., Simonova Z., et al. Ticks and tick-borne pathogens in South Bohemia (Czech Republic)—Spatial variability in Ixodes ricinus abundance, Borrelia burgdorferi and tick-borne encephalitis virus prevalence. Ticks Tick-Borne Dis. 2015;6:559–567. doi: 10.1016/j.ttbdis.2015.04.010. PubMed DOI

Vogerl M., Zubrikova D., Pfister K. Prevalence of Borrelia burgdorferi s.l. in Ixodes ricinus ticks from four localities in Bavaria, Germany. Berl. Munch. Tierarztl. Wochenschr. 2012;125:401–406. PubMed

Kriz B., Beneš C., Daniel M., Maly M. Incidence of tick-borne encephalitis in the czech republic in 2001–2011 in different administrative regions and municipalities with extended power. Epidemiol. Mikrobiol. Imunol. 2013;62:9–18. PubMed

Suss J., Schrader C., Falk U., Wohanka N. Tick-borne encephalitis (TBE) in Germany—Epidemiological data, development of risk areas and virus prevalence in field-collected ticks and in ticks removed from humans. Int. J. Med. Microbiol. 2004;293(Suppl. 37):69–79. doi: 10.1016/S1433-1128(04)80011-1. PubMed DOI

Cortinas M.R., Guerra M.A., Jones C.J., Kitron U. Detection, characterization, and prediction of tick-borne disease foci. Int. J. Med. Microbiol. 2002;291(Suppl. 33):11–20. doi: 10.1016/S1438-4221(02)80003-0. PubMed DOI

Daniel M., Zitek K., Danielova V., Kriz B., Valter J., Kott I. Risk assessment and prediction of Ixodes ricinus tick questing activity and human tick-borne encephalitis infection in space and time in the Czech Republic. Int. J. Med. Microbiol. 2006;296(Suppl. 40):41–47. doi: 10.1016/j.ijmm.2006.02.008. PubMed DOI

Wilhelmsson P., Lindblom P., Fryland L., Nyman D., Jaenson T.G., Forsberg P., Lindgren P.-E. Ixodes ricinus ticks removed from humans in Northern Europe: Seasonal pattern of infestation, attachment sites and duration of feeding. Parasit. Vector. 2013;6:362. doi: 10.1186/1756-3305-6-362. PubMed DOI PMC

Strnad M., Hönig V., Ruzek D., Grubhoffer L., Rego R.O.M. Europe-wide meta-analysis of Borrelia burgdorferi sensu lato prevalence in questing Ixodes ricinus ticks. Appl. Environ. Microbiol. 2017;83 doi: 10.1128/AEM.00609-17. PubMed DOI PMC

Demaerschalck I., Ben Messaoud A., De Kesel M., Hoyois B., Lobet Y., Hoet P., Bigaignon G., Bollen A., Godfroid E. Simultaneous presence of different Borrelia burgdorferi genospecies in biological fluids of Lyme disease patients. J. Clin. Microbiol. 1995;33:602–608. PubMed PMC

Rijpkema S.G., Molkenboer M.J., Schouls L.M., Jongejan F., Schellekens J.F. Simultaneous detection and genotyping of three genomic groups of Borrelia burgdorferi sensu lato in Dutch Ixodes ricinus ticks by characterization of the amplified intergenic spacer region between 5S and 23S rRNA genes. J. Clin. Microbiol. 1995;33:3091–3095. PubMed PMC

Ruzek D., Stastna H., Kopecky J., Golovljova I., Grubhoffer L. Rapid subtyping of tick-borne encephalitis virus isolates using multiplex RT-PCR. J. Virol. Methods. 2007;144:133–137. doi: 10.1016/j.jviromet.2007.04.010. PubMed DOI

Schwaiger M., Cassinotti P. Development of a quantitative real-time RT-PCR assay with internal control for the laboratory detection of tick borne encephalitis virus (TBEV) RNA. J. Clin. Virol. 2003;27:136–145. doi: 10.1016/S1386-6532(02)00168-3. PubMed DOI

Metz C.E. Basic principles of ROC analysis. Semin. Nuclear Med. 1978;8:283–298. doi: 10.1016/S0001-2998(78)80014-2. PubMed DOI

Lalkhen A.G., McCluskey A. Clinical tests: Sensitivity and specificity. Contin. Educ. Anaesth. Crit. Care Pain. 2008;8:221–223. doi: 10.1093/bjaceaccp/mkn041. DOI

R Core Team . R:A Language and Environment for Statistical Computing. R Foundation for Statistical Computing; Vienna, Austria: 2016.

Heyman P., Cochez C., Hofhuis A., van der Giessen J., Sprong H., Porter S.R., Losson B., Saegerman C., Donoso-Mantke O., Niedrig M., et al. A clear and present danger: Tick-borne diseases in Europe. Expert Rev. Anti Infect. Ther. 2010;8:33–50. doi: 10.1586/eri.09.118. PubMed DOI

Erber W., Schmitt H.-J. Self-reported tick-borne encephalitis (TBE) vaccination coverage in Europe: Results from a cross-sectional study. Ticks Tick-Borne Dis. 2018;9:768–777. doi: 10.1016/j.ttbdis.2018.02.007. PubMed DOI

Kollaritsch H., Chmelík V., Dontsenko I., Grzeszczuk A., Kondrusik M., Usonis V., Lakos A. The current perspective on tick-borne encephalitis awareness and prevention in six Central and Eastern European countries: Report from a meeting of experts convened to discuss TBE in their region. Vaccine. 2011;29:4556–4564. doi: 10.1016/j.vaccine.2011.04.061. PubMed DOI

Kriz B., Maly M., Benes C., Daniel M. Epidemiology of tick-borne encephalitis in the Czech Republic 1970–2008. Vector Borne Zoonotic Dis. 2012;12:994–999. doi: 10.1089/vbz.2011.0900. PubMed DOI PMC

Zeman P., Benes C. Spatial distribution of a population at risk: An important factor for understanding the recent rise in tick-borne diseases (Lyme borreliosis and tick-borne encephalitis in the Czech Republic) Ticks Tick-Borne Dis. 2013;4:522–530. doi: 10.1016/j.ttbdis.2013.07.003. PubMed DOI

Zeman P., Benes C. Peri-urbanisation, counter-urbanisation, and an extension of residential exposure to ticks: A clue to the trends in Lyme borreliosis incidence in the Czech Republic? Ticks Tick-Borne Dis. 2014;5:907–916. doi: 10.1016/j.ttbdis.2014.07.006. PubMed DOI

Beytout J., George J.C., Malaval J., Garnier M., Beytout M., Baranton G., Ferquel E., Postic D. Lyme borreliosis incidence in two French departments: Correlation with infection of Ixodes ricinus ticks by Borrelia burgdorferi sensu lato. Vector Borne Zoonotic Dis. 2007;7:507–517. doi: 10.1089/vbz.2006.0633. PubMed DOI

Zeman P., Januska J. Epizootiologic background of dissimilar distribution of human cases of Lyme borreliosis and tick-borne encephalitis in a joint endemic area. Comp. Immunol. Microbiol. Infect. Dis. 1999;22:247–260. doi: 10.1016/S0147-9571(99)00015-6. PubMed DOI

Danielova V. Natural foci of tick-borne encephalitis and prerequisites for their existence. Int. J. Med. Microbiol. 2002;291(Suppl. 33):183–186. doi: 10.1016/S1438-4221(02)80040-6. PubMed DOI

Norman R., Bowers R.G., Begon M., Hudson P.J. Persistence of tick-borne virus in the presence of multiple host species: Tick reservoirs and parasite mediated competition. J. Theor. Biol. 1999;200:111–118. doi: 10.1006/jtbi.1999.0982. PubMed DOI

Hudson P.J., Rizzoli A., Rosà R., Chemini C., Jones L.D., Gould E.A. Tick-borne encephalitis virus in northern Italy: Molecular analysis, relationships with density and seasonal dynamics of Ixodes ricinus. Med. Vet. Entomol. 2001;15:304–313. doi: 10.1046/j.0269-283x.2001.00317.x. PubMed DOI

Ostfeld R.S., Glass G.E., Keesing F. Spatial epidemiology: An emerging (or re-emerging) discipline. Trends Ecol. Evol. (Amst.) 2005;20:328–336. doi: 10.1016/j.tree.2005.03.009. PubMed DOI

Stefanoff P., Rubikowska B., Bratkowski J., Ustrnul Z., Vanwambeke S.O., Rosinska M. A predictive model has identified tick-borne encephalitis high-risk areas in regions where no cases were reported previously, Poland, 1999–2012. Int. J. Environ. Res. Public Health. 2018;15:677. doi: 10.3390/ijerph15040677. PubMed DOI PMC

Suss J. Epidemiology and ecology of TBE relevant to the production of effective vaccines. Vaccine. 2003;21(Suppl. 1):S19–S35. doi: 10.1016/S0264-410X(02)00812-5. PubMed DOI

Imhoff M., Hagedorn P., Schulze Y., Hellenbrand W., Pfeffer M., Niedrig M. Review: Sentinels of tick-borne encephalitis risk. Ticks Tick-Borne Dis. 2015;6:592–600. doi: 10.1016/j.ttbdis.2015.05.001. PubMed DOI

Kitron U. Risk maps: Transmission and burden of vector-borne diseases. Parasitol. Today (Regul. Ed.) 2000;16:324–325. doi: 10.1016/S0169-4758(00)01708-7. PubMed DOI

Alonso-Carne J., Garcia-Martin A., Estrada-Pena A. Modelling the phenological relationships of questing immature Ixodes ricinus (Ixodidae) using temperature and NDVI data. Zoonoses Public Health. 2015;63:40–52. doi: 10.1111/zph.12203. PubMed DOI

Bisanzio D., Amore G., Ragagli C., Tomassone L., Bertolotti L., Mannelli A. Temporal variations in the usefulness of normalized difference vegetation index as a predictor for Ixodes ricinus (Acari: Ixodidae) in a Borrelia lusitaniae focus in Tuscany, central Italy. J. Med. Entomol. 2008;45:547–555. doi: 10.1093/jmedent/45.3.547. PubMed DOI

Estrada-Pena A. Distribution, abundance, and habitat preferences of Ixodes ricinus (Acari: Ixodidae) in northern Spain. J. Med. Entomol. 2001;38:361–370. doi: 10.1603/0022-2585-38.3.361. PubMed DOI

Rizzoli A., Hauffe H.C., Tagliapietra V., Neteler M., Rosà R. Forest structure and roe deer abundance predict tick-borne encephalitis risk in Italy. PLoS ONE. 2009;4:e4336. doi: 10.1371/journal.pone.0004336. PubMed DOI PMC

Stanek G., Reiter M. The expanding Lyme Borrelia complex--clinical significance of genomic species? Clin. Microbiol. Infect. 2011;17:487–493. doi: 10.1111/j.1469-0691.2011.03492.x. PubMed DOI

Rudenko N., Golovchenko M., Mokrácek A., Piskunová N., Ruzek D., Mallatová N., Grubhoffer L. Detection of Borrelia bissettii in cardiac valve tissue of a patient with endocarditis and aortic valve stenosis in the Czech Republic. J. Clin. Microbiol. 2008;46:3540–3543. doi: 10.1128/JCM.01032-08. PubMed DOI PMC

McFadden D. Quantitative Methods for Analyzing Travel Behaviour of Individuals: Some Recent Developments. In: Hensher D., Stopher P., editors. Behavioural Travel Modelling. Croom Helm; London, UK: 1978. pp. 279–318.

Dobler G., Hufert F., Pfeffer M., Essbauer S. Tick-Borne Encephalitis: From Microfocus to Human Disease. In: Mehlhorn H., editor. Progress in Parasitology. Springer; Berlin/Heidelberg, Germany: 2011. pp. 323–331. Parasitology Research Monographs.

Fabbro S.D., Gollino S., Zuliani M., Nazzi F. Investigating the relationship between environmental factors and tick abundance in a small, highly heterogeneous region. J. Vector Ecol. 2015;40:107–116. doi: 10.1111/jvec.12138. PubMed DOI

Ferquel E., Garnier M., Marie J., Bernède-Bauduin C., Baranton G., Pérez-Eid C., Postic D. Prevalence of Borrelia burgdorferi Sensu Lato and Anaplasmataceae Members in Ixodes ricinus Ticks in Alsace, a Focus of Lyme Borreliosis Endemicity in France. Appl. Environ. Microbiol. 2006;72:3074–3078. doi: 10.1128/AEM.72.4.3074-3078.2006. PubMed DOI PMC

Morán Cadenas F., Rais O., Jouda F., Douet V., Humair P.-F., Moret J., Gern L. Phenology of Ixodes ricinus and infection with Borrelia burgdorferi sensu lato along a north- and south-facing altitudinal gradient on Chaumont Mountain, Switzerland. J. Med. Entomol. 2007;44:683–693. doi: 10.1093/jmedent/44.4.683. PubMed DOI

Perez D., Kneubühler Y., Rais O., Gern L. Seasonality of Ixodes ricinus ticks on vegetation and on rodents and Borrelia burgdorferi sensu lato genospecies diversity in two Lyme borreliosis–endemic areas in Switzerland. Vector Borne Zoonotic Dis. 2012;12:633–644. doi: 10.1089/vbz.2011.0763. PubMed DOI PMC

Perez G., Bastian S., Agoulon A., Bouju A., Durand A., Faille F., Lebert I., Rantier Y., Plantard O., Butet A. Effect of landscape features on the relationship between Ixodes ricinus ticks and their small mammal hosts. Parasit. Vector. 2016;9:20. doi: 10.1186/s13071-016-1296-9. PubMed DOI PMC

Paul R.E.L., Cote M., Le Naour E., Bonnet S.I. Environmental factors influencing tick densities over seven years in a French suburban forest. Parasit. Vectors. 2016;9:309. doi: 10.1186/s13071-016-1591-5. PubMed DOI PMC

Süss J., Schrader C., Abel U., Voigt W.P., Schosser R. Annual and seasonal variation of tick-borne encephalitis virus (TBEV) prevalence in ticks in selected hot spot areas in Germany using a nRT-PCR: Results from 1997 and 1998. Zent. Bakteriol. 1999;289:564–578. doi: 10.1016/S0934-8840(99)80010-3. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace