Tick-Bite "Meteo"-Prevention: An Evaluation of Public Responsiveness to Tick Activity Forecasts Available Online
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
PubMed
37763311
PubMed Central
PMC10533051
DOI
10.3390/life13091908
PII: life13091908
Knihovny.cz E-zdroje
- Klíčová slova
- Ixodes ricinus, prevention, tick bite, tick-borne diseases,
- Publikační typ
- časopisecké články MeSH
Until causal prophylaxis is available, the avoidance of ticks and personal protection provide the best insurance against contracting a tick-borne disease (TBD). To support public precaution, tick-activity forecasts (TAFs) based on weather projection are provided online for some regions/countries. This study-aimed at evaluating the efficacy of this preventative strategy-was conducted between 2015 and 2019, and included two countries where TAFs are issued regularly (Czech Republic, Germany) and two neighbouring countries for reference (Austria, Switzerland). Google Trends (GT) data were used to trace public concern with TAFs and related health information. GTs were compared with epidemiological data on TBD cases and tick bites, wherever available. Computer simulations of presumable effectiveness under various scenarios were performed. This study showed that public access to TAFs/preventive information is infrequent and not optimally distributed over the season. Interest arises very early in midwinter and then starts to fall in spring/summer when human-tick contacts culminate. Consequently, a greater number of TBD cases are contracted beyond the period of maximum public responsiveness to prevention guidance. Simulations, nevertheless, indicate that there is a potential for doubling the prevention yield if risk assessment, in addition to tick activity, subsumes the population's exposure, and a real-time surrogate is proposed.
Zobrazit více v PubMed
Jongejan F., Uilenberg G. The global importance of ticks. Parasitology. 2004;129:S3–S14. doi: 10.1017/S0031182004005967. PubMed DOI
Rochlin I., Toledo A. Emerging tick-borne pathogens of public health importance: A mini-review. J. Med. Microbiol. 2020;69:781–791. doi: 10.1099/jmm.0.001206. PubMed DOI PMC
Neelakanta G., Sultana H. Tick saliva and salivary glands: What do we know so far on their role in arthropod blood feeding and pathogen transmission. Front. Cell. Infect. Microbiol. 2022;11:816547. doi: 10.3389/fcimb.2021.816547. PubMed DOI PMC
Eisen L. Personal protection measures to prevent tick bites in the United States: Knowledge gaps, challenges, and opportunities. Ticks Tick-Borne Dis. 2022;13:101944. doi: 10.1016/j.ttbdis.2022.101944. PubMed DOI PMC
MacLeod J. Ixodes ricinus in relation to its physical environment. II. The factors governing survival and activity. Parasitology. 1935;27:123–144. doi: 10.1017/S0031182000015006. DOI
Gray J.S., Turley T., Strickland K.L. Studies on the ecology of the sheep tick, Ixodes ricinus, in Co. Wicklow, Ireland. Ir. Vet. J. 1978;32:25–34.
Daniel M., Vrablik T., Valter J., Kriz B., Danielova V. The TICKPRO computer program for predicting Ixodes ricinus host-seeking activity and the warning system published on websites. Cent. Eur. J. Public Health. 2010;18:230–236. doi: 10.21101/cejph.a3620. PubMed DOI
CHMI Forecast of Tick Activity. [(accessed on 22 July 2022)]. Available online: http://portal.chmi.cz/predpovedi/predpovedi-pocasi/ceska-republika/predpoved-aktivity-klistat.
Donnerwetter, Zecken-Wetter. [(accessed on 22 July 2022)]. Available online: https://www.donnerwetter.de/biowetter/zecken-wetter/
Jun S.-P., Yoo H.S., Choi S. Ten years of research change using Google Trends: From the perspective of big data utilizations and applications. Tech. Forecast. Soc. Chang. 2018;130:69–87. doi: 10.1016/j.techfore.2017.11.009. DOI
Google Trends: Understanding the Data. [(accessed on 22 July 2022)]. Available online: https://trends.google.com/trends/
Arora V.S., McKee M., Stuckler D. Google Trends: Opportunities and limitations in health and health policy research. Health Policy. 2019;123:338–341. doi: 10.1016/j.healthpol.2019.01.001. PubMed DOI
Scharkow M., Vogelgesang J. Measuring the public agenda using search engine queries. Int. J. Pub. Opin. Res. 2011;23:104–113. doi: 10.1093/ijpor/edq048. DOI
Nuti S.V., Wayda B., Ranasinghe I., Wang S., Dreyer R.P., Chen S.I., Murugiah K. The use of Google Trends in health care research: A systematic review. PLoS ONE. 2014;9:e109583. doi: 10.1371/journal.pone.0109583. PubMed DOI PMC
Seifter A., Schwarzwalder A., Geis K., Aucott J. The utility of “Google Trends” for epidemiological research: Lyme disease as an example. Geospat. Health. 2010;4:135–137. doi: 10.4081/gh.2010.195. PubMed DOI
Pesälä S., Virtanen M.J., Sane J., Mustonen P., Kaila M., Helve O. Health Information–Seeking Patterns of the General Public and Indications for Disease Surveillance: Register-Based Study Using Lyme Disease. JMIR Public Health Surveill. 2017;3:e86. doi: 10.2196/publichealth.8306. PubMed DOI PMC
Walker M.D. Can Google be used to study parasitic disease? Internet searching on tick-borne encephalitis in Germany. J. Vector Borne Dis. 2018;55:327–329. doi: 10.4103/0972-9062.256571. PubMed DOI
Kapitány-Fövény M., Ferenci T., Sulyok Z., Kegele J., Richter H., Vályi-Nagy I., Sulyok M. Can Google Trends data improve forecasting of lyme disease incidence? Zoonoses Public Health. 2019;66:101–107. doi: 10.1111/zph.12539. PubMed DOI
Sulyok M., Richter H., Sulyok Z., Kapitány-Fövény M., Walker M.D. Predicting tick-borne encephalitis using Google Trends. Ticks Tick-Borne Dis. 2020;11:101306. doi: 10.1016/j.ttbdis.2019.101306. PubMed DOI
Scheerer C., Rüth M., Tizek L., Köberle M., Biedermann T., Zink A. Googling for ticks and borreliosis in Germany: Nationwide Google search analysis from 2015 to 2018. J. Med. Internet Res. 2020;22:e18581. doi: 10.2196/18581. PubMed DOI PMC
Martin L.J., Hjertqvist M., van Straten E., Bjelkmar P. Investigating novel approaches to tick-borne encephalitis surveillance in Sweden, 2010–2017. Ticks Tick-Borne Dis. 2020;11:101486. doi: 10.1016/j.ttbdis.2020.101486. PubMed DOI
Kim D., Maxwell S., Le Q. Spatial and temporal comparison of perceived risks and confirmed cases of Lyme disease: An exploratory study of Google Trends. Front. Public Health. 2020;8:395. doi: 10.3389/fpubh.2020.00395. PubMed DOI PMC
Sadilek A., Hswen Y., Bavadekar S., Shekel T., Brownstein J.S., Gabrilovich E. Lymelight: Forecasting Lyme disease risk using web search data. NPJ Digit. Med. 2020;3:16. doi: 10.1038/s41746-020-0222-x. PubMed DOI PMC
Bogdziewicz M., Szymkowiak J. Oak acorn crop and Google search volume predict lyme disease risk in temperate Europe. Basic Appl. Ecol. 2016;17:300–307. doi: 10.1016/j.baae.2016.01.002. DOI
Jensen P.M., Danielsen F., Skarphedinsson S. Monitoring temporal trends in Internet searches for “ticks” across Europe by Google Trends: Tick–human interaction or general interest? Insects. 2022;13:176. doi: 10.3390/insects13020176. PubMed DOI PMC
National Institute of Health ISIN/EpiDat. [(accessed on 22 July 2022)]. Available online: http://www.szu.cz/publikace/data/infekce-v-cr?lang=1.
Robert Koch Institute SurvStat@RKI 2.0. [(accessed on 22 July 2022)]. Available online: https://survstat.rki.de/Content/Query/
Federal Office of Public Health BAG-Bulletin. [(accessed on 22 July 2022)]. Available online: https://www.bag.admin.ch/bag/de/home/das-bag/publikationen/periodika/bag-bulletin.html.
Centre of Virology, Medical University of Vienna Virusepidemiologischen Information. [(accessed on 22 July 2022)]. Available online: https://www.virologie.meduniwien.ac.at/wissenschaft-forschung/virus-epidemiologie/
. Arztbesuche wegen Zeckenstich bzw. Lyme-Borreliose sowie Fälle von FSME. Bundesamt Gesundh. Bull. 2015;21/15:338–339.
Daniel M., Maly M., Danielova V., Kriz B., Nuttall P. Abiotic predictors and annual seasonal dynamics of Ixodes ricinus, the major disease vector of Central Europe. Parasit Vectors. 2015;8 doi: 10.1186/s13071-015-1092-y. PubMed DOI PMC
Hönig V., Svec P., Marek L., Mrkvicka T., Zubrikova D., Wittmann-Vögerl M., Masar O., Szturcova D., Ruzek D., Pfister K., et al. Model of risk of exposure to Lyme borreliosis and tick-borne encephalitis virus-infected ticks in the border area of the Czech Republic (South Bohemia) and Germany (Lower Bavaria and Upper Palatinate) Int. J. Environ. Res. Public Health. 2019;16:1173. doi: 10.3390/ijerph16071173. PubMed DOI PMC
Mavragani A., Ochoa G., Tsagarakis K.P. Assessing the methods, tools, and statistical approaches in Google Trends research: Systematic review. J. Med. Internet Res. 2018;20:e270. doi: 10.2196/jmir.9366. PubMed DOI PMC
European Centre for Disease Prevention and Control . Tick-Borne Encephalitis: Annual Epidemiological Report for 2020. ECDC; Stockholm, Sweden: 2022. pp. 1–6.
Borde J.P., Kaier K., Hehn P., Matzarakis A., Frey S., Bestehorn M., Dobler G., Chitimia-Dobler L. The complex interplay of climate, TBEV vector dynamics and TBEV infection rates in ticks—Monitoring a natural TBEV focus in Germany, 2009–2018. PLoS ONE. 2021;16:e0244668. doi: 10.1371/journal.pone.0244668. PubMed DOI PMC
Kriz B., Maly M., Benes C., Daniel M. Epidemiology of tick-borne encephalitis in the Czech Republic 1970–2008. Vector-Borne Zoonotic Dis. 2012;12:994–999. doi: 10.1089/vbz.2011.0900. PubMed DOI PMC
Hellenbrand W., Kreusch T., Böhmer M.M., Wagner-Wiening C., Dobler G., Wichmann O., Altmann D. Epidemiology of tick-borne encephalitis (TBE) in Germany, 2001–2018. Pathogens. 2019;8:42. doi: 10.3390/pathogens8020042. PubMed DOI PMC
Garcia-Marti I., Zurita-Milla R., Harms M.G., Swart A. Using volunteered observations to map human exposure to ticks. Sci. Rep. 2018;8:15435. doi: 10.1038/s41598-018-33900-2. PubMed DOI PMC
Eisen L., Eisen R.J. Benefits and drawbacks of citizen science to complement traditional data gathering approaches for medically important hard ticks (Acari: Ixodidae) in the United States. J. Med. Entomol. 2021;58:1–9. doi: 10.1093/jme/tjaa165. PubMed DOI PMC
Rubel F., Walter M., Vogelgesang J.R., Brugger K. Tick-borne encephalitis (TBE) cases are not random: Explaining trend, low- and high-frequency oscillations based on the Austrian TBE time series. BMC Infect. Dis. 2020;20:448. doi: 10.1186/s12879-020-05156-7. PubMed DOI PMC
Trajer A., Bobvos J., Paldy A., Krisztalovics K. Association between incidence of Lyme disease and spring-early summer season temperature changes in Hungary—1998–2010. Ann. Agric. Environ. Med. 2013;20:245–251. PubMed
Dinis G., Costa C., Pacheco O. Similarities and correlation between resident tourist overnights and Google Trends information in Portugal and its tourism regions. Tour. Manag. Stud. 2017;13:15–22. doi: 10.18089/tms.2017.13302. DOI
Rossello J., Waqas A. The influence of weather on interest in a “Sun, Sea and Sand” tourist destination: The case of Majorca. Weather Clim. Soc. 2016;8:160215110135008. doi: 10.1175/WCAS-D-15-0056.1. DOI
Dautel H., Dippel C., Kämmer D., Werkhausen A., Kahl O. Winter activity of Ixodes ricinus in a Berlin forest. Int. J. Med. Microbiol. 2008;298((Suppl. 1)):50–54. doi: 10.1016/j.ijmm.2008.01.010. DOI
Hubalek Z., Halouzka J., Juricova Z. Host-seeking activity of ixodid ticks in relation to weather variables. J. Vector Ecol. 2003;28:159–165. PubMed
Beugnet F., Chalvet-Monfray K., Loukos H. FleaTickRisk: A meteorological model developed to monitor and predict the activity and density of three tick species and the cat flea in Europe. Geospat. Health. 2009;4:97–113. doi: 10.4081/gh.2009.213. PubMed DOI
Kiewra D., Kryza M., Szymanowski M. Influence of selected meteorological variables on the questing activity of Ixodes ricinus ticks in Lower Silesia, SW Poland. J. Vector Ecol. 2014;39:138–145. doi: 10.1111/j.1948-7134.2014.12080.x. PubMed DOI
Hauser G., Rais O., Cadenas F.M., Gonseth Y., Bouzelboudjen M., Gern L. Influence of climatic factors on Ixodes ricinus nymph abundance and phenology over a long-term monthly observation in Switzerland (2000–2014) Paras. Vectors. 2018;11:289. doi: 10.1186/s13071-018-2876-7. PubMed DOI PMC
Gethmann J., Hoffmann B., Kasbohm E., Süss J., Habedank B., Conraths F.J., Beer M., Klaus C. Research paper on abiotic factors and their influence on Ixodes ricinus activity—Observations over a two-year period at several tick collection sites in Germany. Parasitol. Res. 2020;119:1455–1466. doi: 10.1007/s00436-020-06666-8. PubMed DOI PMC
Zając Z., Kulisz J., Bartosik K., Woźniak A., Dzierżak M., Khan A. Environmental determinants of the occurrence and activity of Ixodes ricinus ticks and the prevalence of tick-borne diseases in eastern Poland. Sci. Rep. 2021;11:15472. doi: 10.1038/s41598-021-95079-3. PubMed DOI PMC
Wongnak P., Bord S., Jacquot M., Agoulon A., Beugnet F., Bournez L., Cèbe N., Chevalier A., Cosson J.-F., Dambrine N., et al. Meteorological and climatic variables predict the phenology of Ixodes ricinus nymph activity in France, accounting for habitat heterogeneity. Sci. Rep. 2022;12:7833. doi: 10.1038/s41598-022-11479-z. PubMed DOI PMC