Application of interspecific Somatic Cell Nuclear Transfer (iSCNT) in sturgeons and an unexpectedly produced gynogenetic sterlet with homozygous quadruple haploid

. 2018 Apr 16 ; 8 (1) : 5997. [epub] 20180416

Jazyk angličtina Země Velká Británie, Anglie Médium electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid29662093
Odkazy

PubMed 29662093
PubMed Central PMC5902484
DOI 10.1038/s41598-018-24376-1
PII: 10.1038/s41598-018-24376-1
Knihovny.cz E-zdroje

Somatic cell nuclear transfer (SCNT) is a very promising cloning technique for reconstruction of endangered animals. The aim of the present research is to implement the interspecific SCNT (iSCNT) technique to sturgeon; one fish family bearing some of the most critically endangered species. We transplanted single cells enzymatically isolated from a dissociated fin-fragment of the Russian sturgeon (Acipenser gueldenstaedtii) into non-enucleated eggs of the sterlet (Acipenser ruthenus), two species bearing different ploidy (4n and 2n, respectively). Up to 6.7% of the transplanted eggs underwent early development, and one feeding larva (0.5%) was successfully produced. Interestingly, although this transplant displayed tetraploidism (4n) as the donor species, the microsatellite and species-specific analysis showed recipient-exclusive homozygosis without any donor markers. Namely, with regards to this viable larva, host genome duplication occurred twice to form tetraploidism during its early development, probably due to iSCNT manipulation. The importance of this first attempt is to apply iSCNT in sturgeon species, establishing the crucial first steps by adjusting the cloning-methodology in sturgeon's biology. Future improvements in sturgeon's cloning are necessary for providing with great hope in sturgeon's reproduction.

Erratum v

PubMed

Zobrazit více v PubMed

Wildt DE. Genetic resource banks for conserving wildlife species: Justification, examples and becoming organized on a global basis. Anim. Reprod. Sci. 1992;28:247–257.

Wells DN, Misica PM, Tervit HR, Vivanco WH. Adult somatic cell nuclear transfer is used to preserve the last surviving cow of the Enderby Island cattle breed. Reprod. Fertil. Dev. 1998;10:369–378. PubMed

Lanza RP, et al. Cloning of an endangered species (Bos gaurus) using interspecies nuclear transfer. Cloning. 2000;2:79–90. PubMed

Solti L, Crichton EG, Loskutoff NM, Cseh S. Economical and ecological importance of indigenous livestock and the application of assisted reproduction to their preservation. Theriogenology. 2000;53:149–162. PubMed

Loi P, et al. Genetic rescue of an endangered mammal by cross-species nuclear transfer using post-mortem somatic cells. Nat. Biotechnol. 2001;19:962–964. PubMed

Labbé, C., Robles, V. & Herraez, M. P. Cryopreservation of gametes for aquaculture and alternative cell sources for genome preservation. In book: Advances in Aquaculture Hatchery Technology (eds Allan, G. & Burnell, G) 76–116 (Elsevier, 2013).

Srirattana K, et al. Full-term development of gaur-bovine interspecies somatic cell nuclear transfer embryos: Effect of trichostatin A treatment. Cell. Reprogram. 2012;14:248–257. PubMed

Gómez MC, Pope CE, Dresser BL. Nuclear transfer in cats and its application. Theriogenology. 2006;66:72–81. PubMed

Wani NA, Vettical BS, Hong SB. First cloned Bactrian camel (Camelus bactrianus) calf produced by interspecies somatic cell nuclear transfer: A step towards preserving the critically endangered wild Bactrian camels. PLoS ONE. 2017;12(5):e0177800. PubMed PMC

Birstein VJ, Bemis WE, Waldman JR. The threatened status of acipenseriform species: a summary. Environ. Biol. Fish. 1997;48:427–435.

International Union for Conservation of Nature (2017). The IUCN Red List of Threatened Species, Version 2017–2, www.iucnredlist.org (accessed on 14 September 2017).

Birstein VJ, Vasiľev VP. Tetraploid-octoploid relationships and karyological evolution in the order Acipenseriformes (Pisces): karyotypes, nucleoli, and nucleolus-organizer regions in four acipenserid species. Genetica. 1987;73:3–12.

Fontana F, et al. Karyotypic characterization of the great sturgeon, Huso huso, by multiple staining techniques and fluorescent in situ hybridization. Mar. Biol. 1998;132:495–501.

Tagliavini J, et al. Molecular cytogenetic analysis of the karyotype of the European Atlantic sturgeon. Acipenser sturio. Heredity. 1999;83:520–525. PubMed

Fontana F, Lanfredi M, Rossi R, Bronzi P, Arlati G. Karyotypic characterization of Acipenser gueldenstaedti with C-, AgNO3 and fluorescence banding techniques. Ital. J. Zool. 1996;63:113–118.

Vasiľev VP, Vasiľeva ED, Shedko SV, Novomodny GV. Ploidy levels in the kaluga Huso dauricus and sakhalin sturgeon Acipenser mikadoi (Acipenseridae, Pisces) Dokl. Biol. Sci. 2009;426:228–231. PubMed

Fontana F, et al. Evidence of hexaploid karyotype in shortnose sturgeon. Genome. 2008;51:113–119. PubMed

Zhu ZY, Sun YH. Embryonic and genetic manipulation in fish. Cell Res. 2000;10:17–27. PubMed

Lee KY, Huang H, Ju B, Yang Z, Lin S. Cloned zebrafish by nuclear transfer from long-term-cultured cells. Nat. Biotechnol. 2002;20:795–799. PubMed

Ju B, et al. Development and gene expression of nuclear transplants generated by transplantation of cultured cells nuclei into non-enucleated eggs in the medaka Oryzias latipes. Dev. Growth Differ. 2003;45:167–174. PubMed

Kaftanovskaya E, Motosugi N, Kinoshita M, Ozato K, Wakamatsu Y. Ploidy mosaicism in well-developed nuclear transplants produced by transfer of adult somatic cell nuclei to non-enucleated eggs of medaka (Oryzias latipes) Dev. Growth Differ. 2007;49:691–698. PubMed

Wakamatsu Y. Novel method for the nuclear transfer of adult somatic cells in medaka fish (Oryzias latipes): use of diploidized eggs as recipients. Dev. Growth Differ. 2008;50:427–436. PubMed

Siripattarapravat K, Pinmee B, Venta PJ, Chang CC, Cibelli JB. Somatic cell nuclear transfer in zebrafish. Nat. Methods. 2009;6:733–735. PubMed

Luo DJ, Hu W, Chen SP, Zhu ZY. Critical developmental stages for the efficiency of somatic cell nuclear transfer in zebrafish. Int. J. Biol. Sci. 2011;7:476–486. PubMed PMC

Liu TM, et al. Factors affecting the efficiency of somatic cell nuclear transplantation in the fish embryo. J. Exp. Zool. 2002;293:719–725. PubMed

Akimenko MA, Mari-Beffa M, Becerra J, Geraudie J. Old questions, new tools, and some answers to the mystery of fin regeneration. Dev. Dynam. 2003;226:190–201. PubMed

Chenais N, Depincé A, Le Bail PY, Labbé C. Fin cell cryopreservation and fish reconstruction by nuclear transfer stand as promising technologies for preservation of finfish genetic resources. Aquac. Int. 2014;22:63–76.

Le Bail PY, et al. Optimization of somatic cell injection in the perspective of nuclear transfer in goldfish. BMC Dev. Biol. 2010;10:64. PubMed PMC

Meissner A, Jaenisch R. Mammalian nuclear transfer. Dev. Dynam. 2006;235:2460–2469. PubMed

Hochleithner, M. & Gessner, J. The Sturgeons and Paddlefishes (Acipenseriformes) of the World - Biology and Aquaculture. 1–248 (AquaTech Publications, 2012).

Siripattarapravat K, Busta A, Steibel JP, Cibelli J. Characterization and in vitro control of MPF activity in zebrafish eggs. Zebrafish. 2009;6:97–105. PubMed

Bubenshchikova E, et al. Generation of fertile and diploid fish, medaka (Oryzias latipes), from nuclear transplantation of blastula and four-somite-stage embryonic cells into nonenucleated unfertilized eggs. Cloning Stem Cells. 2005;7:255–264. PubMed

Gasaryan KG, Hung NM, Neyfahk AA, Ivanenkov VV. Nuclear transplantation in teleost Misgurnus fossilis L. Nature. 1979;280:585–587. PubMed

Tung TC, et al. Nuclear transplantation in fishes. Sci. Sin. 1963;14:1244–1245.

Gibbs PDL, Peek A, Thorgaard G. An in vivo screen for the luciferase transgene in zebrafish. Mol. Mar. Biol. Biotechnol. 1994;3:307–316. PubMed

Lee KW, Webb SE, Miller AL. A wave of free cytosolic calcium traverses zebrafish eggs on activation. BMC Dev. Biol. 1999;214:168–180. PubMed

Depincé A, Marandel L, Goardon L, Le Bail PY, Labbé C. Trout coelomic fluid suitability as Goldfish oocyte extender can be determined by a simple turbidity test. Theriogenology. 2011;75:1755–1761. PubMed

Siripattarapravat K, et al. The influence of donor nucleus source on the outcome of zebrafish somatic cell nuclear transfer. Int. J. Dev. Biol. 2010;54:1679–1683. PubMed

Ikegami R, Rivera-Bennetts AK, Brooker DL, Yager TD. Effect of inhibitors of DNA replication on early zebrafish embryos: evidence for coordinate activation of multiple intrinsic cell-cycle checkpoints at the mid-blastula transition. Zygote. 1997;5:153–175. PubMed

Kane DA, Kimmel CB. The zebrafish midblastula transition. Development. 1993;119:447–456. PubMed

Blelloch R, et al. Reprogramming efficiency following somatic cell nuclear transfer is influenced by the differentiation and methylation state of the donor nucleus. Stem Cells. 2006;24:2007–2013. PubMed PMC

Niemann H, Tian XC, King WA, Lee RSF. Epigenetic reprogramming in embryonic and foetal development upon somatic cell nuclear transfer cloning. Reproduction. 2008;135:151–163. PubMed

Bubenshchikova E, et al. Diploidized eggs reprogram adult somatic cell nuclei to pluripotency in nuclear transfer in medaka fish (Oryzias latipes) Dev. Growth Differ. 2007;49:699–709. PubMed

Newport J, Kirschner M. A Major Developmental Transition in Early Xenopus Embryos: I. Characterization and Timing of Cellular Changes at the Midblastula Stage. Cell. 1982;3:675–686. PubMed

Havelka M, Kašpar V, Hulak M, Flajšhans M. Sturgeon genetics and cytogenetics: a review related to ploidy levels and interspecific hybridization. Folia Zool. 2011;60:93–103.

Havelka M, Fujimoto T, Hagihara S, Adachi S, Arai K. Nuclear DNA markers for identification of Beluga and Sterlet sturgeons and their interspecific Bester hybrid. Sci Rep. 2017;7:1694. PubMed PMC

Cherr GN, Clark WH., Jr. Fine structure of the envelope and micropyles in the eggs of the white sturgeon, Acipenser transmontanus Richardson. Dev. Growth Differ. 1982;24:341–352. PubMed

Piferrer F, et al. Polyploid fish and shellfish: production, biology and applications to aquaculture for performance improvement and genetic containment. Aquaculture. 2009;239:125–156.

Yabe T, Ge X, Pelegri F. The zebrafish maternal-effect gene cellular atoll encodes the centriolar component sas-6 and defects in its paternal function promote whole genome duplication. Dev. Biol. 2007;312:44–60. PubMed PMC

Sohrabnezhad M, Kalbassi MR, Nazari RM, Bahmani M. Short-term storage of Persian sturgeon (Acipenser persicus) ova in artificial media and coelomic fluid. J. Appl. Ichthyol. 2006;22:395–399.

May B, Krueger CC, Kincaid HL. Genetic variation at microsatellite loci in sturgeon: primer sequence homology in Acipenser and Scaphirhynchus. Can. J. Fish Aquat. Sci. 1997;54:1542–1547.

King TL, Lubinski BA, Spidle AP. Microsatellite DNA variation in Atlantic sturgeon Acipenser oxyrinchus oxyrinchus: and cross-species amplification in the Acipenseridae. Conserv. Genet. 2001;2:103–119.

McQuown E, Gall GAE, May B. Characterization and inheritance of six microsatellite loci in lake sturgeon. Trans. Am. Fish Soc. 2002;131:299–307.

Havelka M, Hulak M, Bailie DA, Prodöhl PA, Flajšhans M. Extensive Genome Duplication in Sturgeons: New Evidence from Microsatellite Data. J. Appl. Ichthyol. 2013;29:704–708.

Kearse M, et al. Geneious Basic: An integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics. 2012;28:1647–1649. PubMed PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...