Cardiac Output Monitoring in Preterm Infants
Status PubMed-not-MEDLINE Language English Country Switzerland Media electronic-ecollection
Document type Journal Article, Review
PubMed
29666787
PubMed Central
PMC5891589
DOI
10.3389/fped.2018.00084
Knihovny.cz E-resources
- Keywords
- cardiac output, hemodynamic, monitoring, neonate, perfusion, preterm,
- Publication type
- Journal Article MeSH
- Review MeSH
Maintaining optimal circulatory status is a key component of preterm neonatal care. Low-cardiac output (CO) in the preterm neonate leads to inadequate perfusion of vital organs and has been linked to a variety of adverse outcomes with heightened acute morbidity and mortality and adverse neurodevelopmental outcomes. Having technology available to monitor CO allows us to detect low-output states and potentially intervene to mitigate the unwanted effects of reduced organ perfusion. There are many technologies available for the monitoring of CO in the preterm neonatal population and while many act as useful adjuncts to aid clinical decision-making no technique is perfect. In this review, we discuss the relative merits and limitations of various common methodologies available for monitoring CO in the preterm neonatal population. We will discuss the ongoing challenges in monitoring CO in the preterm neonate along with current gaps in our knowledge. We conclude by discussing emerging technologies and areas that warrant further study.
3rd School of Medicine Charles University Prague Czechia
Institute for the Care of Mother and Child Prague Czechia
Neonatology Department Coombe Women and Infant University Hospital Dublin Ireland
See more in PubMed
Pellicer A, Valverde E, Elorza MD, Madero R, Gayá F, Quero J, et al. Cardiovascular support for low birth weight infants and cerebral hemodynamics: a randomized, blinded, clinical trial. Pediatrics (2005) 115(6):1501–12.10.1542/peds.2004-1396 PubMed DOI
Osborn D, Evans N, Kluckow M. Randomized trial of dobutamine versus dopamine in preterm infants with low systemic blood flow. J Pediatr (2002) 140(2):183–91.10.1067/mpd.2002.120834 PubMed DOI
Miall-Allen VM, de Vries LS, Whitelaw AG. Mean arterial blood pressure and neonatal cerebral lesions. Arch Dis Child (1987) 62(10):1068–9.10.1136/adc.62.10.1068 PubMed DOI PMC
Goldstein RF, Thompson RJ, Jr, Oehler JM, Brazy JE. Influence of acidosis, hypoxemia, and hypotension on neurodevelopmental outcome in very low birth weight infants. Pediatrics (1995) 95(2):238. PubMed
Fanaroff JM, Wilson-Costello DE, Newman NS, Montpetite MM, Fanaroff AA. Treated hypotension is associated with neonatal morbidity and hearing loss in extremely low birth weight infants. Pediatrics (2006) 117(4):1131–5.10.1542/peds.2005-1230 PubMed DOI
Tibby SM, Hatherill M, Marsh MJ, Murdoch IA. Clinicians’ abilities to estimate cardiac index in ventilated children and infants. Arch Dis Child (1997) 77(6):516–8.10.1136/adc.77.6.516 PubMed DOI PMC
Miletin J, Pichova K, Dempsey EM. Bedside detection of low systemic flow in the very low birth weight infant on day 1 of life. Eur J Pediatr (2009) 168(7):809–13.10.1007/s00431-008-0840-9 PubMed DOI
Osborn DA, Evans N, Kluckow M. Clinical detection of low upper body blood flow in very premature infants using blood pressure, capillary refill time, and central-peripheral temperature difference. Arch Dis Child (2004) 89(2):F168–73.10.1136/adc.2002.023796 PubMed DOI PMC
Miletin J, Dempsey EM. Low superior vena cava flow on day 1 and adverse outcome in the very low birthweight infant. Arch Dis Child (2008) 93(5):F368.10.1136/adc.2007.129304 PubMed DOI
Groves AM, Kuschel CA, Knight DB, Skinner JR. Relationship between blood pressure and blood flow in newborn preterm infants. Arch Dis Child (2008) 93(1):F29–32.10.1136/adc.2006.109520 PubMed DOI
Pladys P, Wodey E, Beuchée A, Branger B, Bétrémieux P. Left ventricle output and mean arterial blood pressure in preterm infants during the 1st day of life. Eur J Pediatr (1999) 158(10):817–24.10.1007/s004310051213 PubMed DOI
Kluckow M, Evans N. Relationship between blood pressure and cardiac output in preterm infants requiring mechanical ventilation. J Pediatr (1996) 129(4):506–12.10.1016/S0022-3476(96)70114-2 PubMed DOI
Gale C. Question 2 is capillary refill time a useful marker of haemodynamic status in neonates? Arch Dis Child (2010) 95(5):395.10.1136/adc.2010.186411 PubMed DOI
Gaspar HA, Morhy SS. The role of focused echocardiography in pediatric intensive care: a critical appraisal. Biomed Res Int (2015) 2015:596451.10.1155/2015/596451 PubMed DOI PMC
Ranjit S, Natraj R, Kandath SK, Kissoon N, Ramakrishnan B, Marik PE. Early norepinephrine decreases fluid and ventilatory requirements in pediatric vasodilatory septic shock. Indian J Crit Care Med (2016) 20(10):561–9.10.4103/0972-5229.192036 PubMed DOI PMC
Ranjit S, Aram G, Kissoon N, Ali MK, Natraj R, Shresti S, et al. Multimodal monitoring for hemodynamic categorization and management of pediatric septic shock: a pilot observational study. Pediatr Crit Care Med (2014) 15(1):e17–26.10.1097/PCC.0b013e3182a5589c PubMed DOI
Manasia AR, Nagaraj HM, Kodali RB, Croft LB, Oropello JM, Kohli-Seth R, et al. Feasibility and potential clinical utility of goal-directed transthoracic echocardiography performed by noncardiologist intensivists using a small hand-carried device (SonoHeart) in critically ill patients. J Cardiothorac Vasc Anesth (2005) 19(2):155–9.10.1053/j.jvca.2005.01.023 PubMed DOI
West CR, Groves AM, Williams CE, Harding JE, Skinner JR, Kuschel CA, et al. Early low cardiac output is associated with compromised electroencephalographic activity in very preterm infants. Pediatr Res (2006) 59(4 Pt 1):610–5.10.1203/01.pdr.0000203095.06442.ad PubMed DOI
Kluckow M, Evans N. Low systemic blood flow and hyperkalemia in preterm infants. J Pediatr (2001) 139(2):227–32.10.1067/mpd.2001.115315 PubMed DOI
Osborn DA, Evans N, Kluckow M, Bowen JR, Rieger I. Low superior vena cava flow and effect of inotropes on neurodevelopment to 3 years in preterm infants. Pediatrics (2007) 120(2):372–80.10.1542/peds.2006-3398 PubMed DOI
Kluckow M, Evans N. Low superior vena cava flow and intraventricular haemorrhage in preterm infants. Arch Dis Child (2000) 82(3):F188–94.10.1136/fn.82.3.F188 PubMed DOI PMC
Osborn DA, Evans N, Kluckow M. Effect of early targeted indomethacin on the ductus arteriosus and blood flow to the upper body and brain in the preterm infant. Arch Dis Child Fetal Neonatal Ed (2003) 88(6):F477.10.1136/fn.88.6.F477 PubMed DOI PMC
Osborn DA, Evans N, Kluckow M. Hemodynamic and antecedent risk factors of early and late periventricular/intraventricular hemorrhage in premature infants. Pediatrics (2003) 112(1 Pt 1):33–9.10.1542/peds.112.1.33 PubMed DOI
Noori S, Seri I. Hemodynamic antecedents of peri/intraventricular hemorrhage in very preterm neonates. Semin Fetal Neonatal Med (2015) 20(4):232–7.10.1016/j.siny.2015.02.004 PubMed DOI
Noori S, McCoy M, Anderson MP, Ramji F, Seri I. Changes in cardiac function and cerebral blood flow in relation to peri/intraventricular hemorrhage in extremely preterm infants. J Pediatr (2014) 164(2):264–70.e1–3.10.1016/j.jpeds.2013.09.045 PubMed DOI
de Waal K, Evans N. Hemodynamics in preterm infants with late-onset sepsis. J Pediatr (2010) 156(6):918–22, 922.e1.10.1016/j.jpeds.2009.12.026 PubMed DOI
Hunt RW, Evans N, Rieger I, Kluckow M. Low superior vena cava flow and neurodevelopment at 3 years in very preterm infants. J Pediatr (2004) 145(5):588–92.10.1016/j.jpeds.2004.06.056 PubMed DOI
Ballweg JA, Wernovsky G, Gaynor JW. Neurodevelopmental outcomes following congenital heart surgery. Pediatr Cardiol (2007) 28(2):126–33.10.1007/s00246-006-1450-9 PubMed DOI
Shi S, Zhao Z, Liu X, Shu Q, Tan L, Lin R, et al. Perioperative risk factors for prolonged mechanical ventilation following cardiac surgery in neonates and young infants. Chest (2008) 134(4):768–74.10.1378/chest.07-2573 PubMed DOI
Soleymani S, Borzage M, Seri I. Hemodynamic monitoring in neonates: advances and challenges. J Perinatol (2010) 30(Suppl):S38–45.10.1038/jp.2010.101 PubMed DOI
de Boode WP, Hopman JC, Daniëls O, van der Hoeven HG, Liem KD. Cardiac output measurement using a modified carbon dioxide fick method: a validation study in ventilated lambs. Pediatr Res (2007) 61(3):279–83.10.1203/pdr.0b013e318030d0c6 PubMed DOI
Wippermann CF, Huth RG, Schmidt FX, Thul J, Betancor M, Schranz D. Continuous measurement of cardiac output by the fick principle in infants and children: comparison with the thermodilution method. Intensive Care Med (1996) 22(5):467–71.10.1007/BF01712169 PubMed DOI
Tibby SM, Hatherill M, Marsh MJ, Morrison G, Anderson D, Murdoch IA. Clinical validation of cardiac output measurements using femoral artery thermodilution with direct fick in ventilated children and infants. Intensive Care Med (1997) 23(9):987–91.10.1007/s001340050443 PubMed DOI
Todres ID, Crone RK, Rogers MC, Shannon DC. Swan-Ganz catheterization in the critically ill newborn. Crit Care Med (1979) 7(8):330–4.10.1097/00003246-197908000-00002 PubMed DOI
Ganz W, Donoso R, Marcus HS, Forrester JS, Swan HJ. A new technique for measurement of cardiac output by thermodilution in man. Am J Cardiol (1971) 27(4):392–6.10.1016/0002-9149(71)90436-X PubMed DOI
Hofkens PJ, Verrijcken A, Merveille K, Neirynck S, Van Regenmortel N, De Laet I, et al. Common pitfalls and tips and tricks to get the most out of your transpulmonary thermodilution device: results of a survey and state-of-the-art review. Anaesthesiol Intensive Ther (2015) 47(2):89–116.10.5603/AIT.a2014.0068 PubMed DOI
Sommers MS, Woods SL, Courtade MA. Issues in methods and measurement of thermodilution cardiac output. Nurs Res (1993) 42(4):228–33.10.1097/00006199-199307000-00007 PubMed DOI
Sakka SG, Reuter DA, Perel A. The transpulmonary thermodilution technique. J Clin Monitor Comput (2012) 26(5):347–53.10.1007/s10877-012-9378-5 PubMed DOI
Giraud R, Siegenthaler N, Merlani P, Bendjelid K. Reproducibility of transpulmonary thermodilution cardiac output measurements in clinical practice: a systematic review. J Clin Monit Comput (2017) 31(1):43–51.10.1007/s10877-016-9823-y PubMed DOI
Hamilton WF, Riley RL, Attyah AM, Cournand A, Fowell DM, Himmelstein A, et al. Comparison of the fick and dye injection methods of measuring the cardiac output in man. Am J Physiol (1948) 153(2):309–21. PubMed
Venkataraman K, De Guzman MF, Hafeez Khan A, Haywood LJ. Cardiac output measurement: a comparison of direct fick, dye dilution and thermodilution methods in stable and acutely Ill patients. J Natl Med Assoc (1976) 68(4):281–4. PubMed PMC
Prec KJ, Cassels DE. Dye dilution curves and cardiac output in newborn infants. Circulation (1955) 11(5):789–98.10.1161/01.CIR.11.5.789 PubMed DOI
Mehta Y, Arora D. Newer methods of cardiac output monitoring. World J Cardiol (2014) 6(9):1022–9.10.4330/wjc.v6.i9.1022 PubMed DOI PMC
Fakler U, Pauli C, Balling G, Lorenz HP, Eicken A, Hennig M, et al. Cardiac index monitoring by pulse contour analysis and thermodilution after pediatric cardiac surgery. J Thorac Cardiovasc Surg (2007) 133(1):224–8.10.1016/j.jtcvs.2006.07.038 PubMed DOI
Teng S, Kaufman J, Pan Z, Czaja A, Shockley H, da Cruz E. Continuous arterial pressure waveform monitoring in pediatric cardiac transplant, cardiomyopathy and pulmonary hypertension patients. Intensive Care Med (2011) 37(8):1297–301.10.1007/s00134-011-2252-y PubMed DOI
Drummond KE, Murphy E. Minimally invasive cardiac output monitors. Cont Educ Anaesth Crit Care Pain (2012) 12(1):5–10.10.1093/bjaceaccp/mkr044 DOI
Boehne M, Baustert M, Paetzel V, Köditz H, Schoof S, Happel CM, et al. Determination of cardiac output by ultrasound dilution technique in infants and children: a validation study against direct fick principle. Br J Anaesth (2014) 112(3):469–76.10.1093/bja/aet382 PubMed DOI
Crittendon I, III, Dreyer WJ, Decker JA, Kim JJ. Ultrasound dilution: an accurate means of determining cardiac output in children. Pediatr Crit Care Med (2012) 13(1):42–6.10.1097/PCC.0b013e3182196804 PubMed DOI PMC
Krivitski NM, Kislukhin VV, Thuramalla NV. Theory and in vitro validation of a new extracorporeal arteriovenous loop approach for hemodynamic assessment in pediatric and neonatal intensive care unit patients. Ped Crit Care Med (2008) 9(4):423–8.10.1097/01.PCC.0b013e31816c71bc PubMed DOI PMC
Linton R, Band D, O’Brien T, Jonas M, Leach R. Lithium dilution cardiac output measurement: a comparison with thermodilution. Crit Care Med (1997) 25(11):1796–800.10.1097/00003246-199711000-00015 PubMed DOI
Linton RA, Jonas MM, Tibby SM, Murdoch IA, O’Brien TK, Linton NW, et al. Cardiac output measured by lithium dilution and transpulmonary thermodilution in patients in a paediatric intensive care unit. Intensive Care Med (2000) 26(10):1507–11.10.1007/s001340051347 PubMed DOI
Beker F, Davis PG, Sehgal A, Rogerson S. Echocardiographic assessment of left ventricular outflow tract diameter in preterm infants. Aust J Ultrasound Med (2014) 17(4):146–9.10.1002/j.2205-0140.2014.tb00236.x PubMed DOI PMC
Mertens L, Seri I, Marek J, Arlettaz R, Barker P, McNamara P, et al. Targeted Neonatal Echocardiography in the Neonatal Intensive Care Unit: practice guidelines and recommendations for training. Writing Group of the American Society of Echocardiography (ASE) in collaboration with the European Association of Echocardiography (EAE) and the Association for European Pediatric Cardiologists (AEPC). J Am Soc Echocardiogr (2011) 24(10):1057–78.10.1093/ejechocard/jer181 PubMed DOI
Singh Y. Echocardiographic evaluation of hemodynamics in neonates and children. Front Pediatr (2017) 5:201.10.3389/fped.2017.00201 PubMed DOI PMC
Sprenkelder K, de Waal K, Kok J. The anatomical position of the left and right ventricular outflow in newborns and infants. Pediatr Res (2011) 70:281.10.1038/pr.2011.506 DOI
Alverson DC, Eldridge MW, Johnson JD, Aldrich M, Angelus P, Berman W., Jr Noninvasive measurement of cardiac output in healthy preterm and term newborn infants. Am J Perinatol (1984) 1(2):148–51.10.1055/s-2007-999991 PubMed DOI
Mellander M, Sabel KG, Caidahl K, Solymar L, Eriksson B. Doppler determination of cardiac output in infants and children: comparison with simultaneous thermodilution. Pediatr Cardiol (1987) 8(4):241–6.10.1007/BF02427536 PubMed DOI
Chew MS, Poelaert J. Accuracy and repeatability of pediatric cardiac output measurement using Doppler: 20-year review of the literature. Intensive Care Med (2003) 29(11):1889–94.10.1007/s00134-003-1967-9 PubMed DOI
Patel N, Dodsworth M, Mills JF. Cardiac output measurement in newborn infants using the ultrasonic cardiac output monitor: an assessment of agreement with conventional echocardiography, repeatability and new user experience. Arch Dis Child Fetal Neonatal Ed (2011) 96(3):F206–11.10.1136/adc.2009.170704 PubMed DOI
Tsai-Goodman B, Martin RP, Marlow N, Skinner JR. The repeatability of echocardiographic determination of right ventricular output in the newborn. Cardiol Young (2001) 11(2):188–94.10.1017/S1047951101000099 PubMed DOI
Evans N, Kluckow M. Early determinants of right and left ventricular output in ventilated preterm infants. Arch Dis Child Fetal Neonatal Ed (1996) 74(2):F88–94.10.1136/fn.74.2.F88 PubMed DOI PMC
Jain A, Mohamed A, El-Khuffash A, Connelly KA, Dallaire F, Jankov RP, et al. A comprehensive echocardiographic protocol for assessing neonatal right ventricular dimensions and function in the transitional period: normative data and z scores. J Am Soc Echocardiogr (2014) 27(12):1293–304.10.1016/j.echo.2014.08.018 PubMed DOI
Takenaka K, Waffarn F, Dabestani A, Gardin JM, Henry WL. A pulsed Doppler echocardiographic study of the postnatal changes in pulmonary artery and ascending aortic flow in normal term newborn infants. Am Heart J (1987) 113(3):759–66.10.1016/0002-8703(87)90717-4 PubMed DOI
Sholler GF, Celermajer JM, Whight CM, Bauman AE. Echo Doppler assessment of cardiac output and its relation to growth in normal infants. Am J Cardiol (1987) 60(13):1112–6.10.1016/0002-9149(87)90363-8 PubMed DOI
Popat H, Robledo KP, Sebastian L, Evans N, Gill A, Kluckow M, et al. Interobserver agreement and image quality of functional cardiac ultrasound measures used in a randomised trial of delayed cord clamping in preterm infants. Arch Dis Child Fetal Neonatal Ed (2017).10.1136/archdischild-2016-312006 PubMed DOI
Kluckow M, Evans N. Superior vena cava flow in newborn infants: a novel marker of systemic blood flow. Arch Dis Child Fetal Neonatal Ed (2000) 82(3):F182–7.10.1136/fn.82.3.F182 PubMed DOI PMC
Ficial B, Bonafiglia E, Padovani EM, Prioli MA, Finnemore AE, Cox DJ, et al. A modified echocardiographic approach improves reliability of superior vena caval flow quantification. Arch Dis Child Fetal Neonatal Ed (2017) 102(1):F7–11.10.1136/archdischild-2015-309523 PubMed DOI
Shah D, Paradisis M, Bowen JR. Relationship between systemic blood flow, blood pressure, inotropes, and aEEG in the first 48 h of life in extremely preterm infants. Pediatr Res (2013) 74(3):314–20.10.1038/pr.2013.104 PubMed DOI
McGovern M, Miletin J. A review of superior vena cava flow measurement in the neonate by functional echocardiography. Acta Paediatr (2017) 106(1):22–9.10.1111/apa.13584 PubMed DOI
Groves AM, Kuschel CA, Knight DB, Skinner JR. Echocardiographic assessment of blood flow volume in the superior vena cava and descending aorta in the newborn infant. Arch Dis Child Fetal Neonatal Ed (2008) 93(1):F24–8.10.1136/adc.2006.109512 PubMed DOI
Sommers R, Stonestreet BS, Oh W, Laptook A, Yanowitz TD, Raker C, et al. Hemodynamic effects of delayed cord clamping in premature infants. Pediatrics (2012) 129:e667–72.10.1542/peds.2011-2550 PubMed DOI PMC
Taylor K, La Rotta G, McCrindle BW, Manlhiot C, Redington A, Holtby H. A comparison of cardiac output by thoracic impedance and direct fick in children with congenital heart disease undergoing diagnostic cardiac catheterization. J Cardiothorac Vasc Anesth (2011) 25(5):776–9.10.1053/j.jvca.2011.05.002 PubMed DOI
Katheria AC, Wozniak M, Harari D, Arnell K, Petruzzelli D, Finer NN. Measuring cardiac changes using electrical impedance during delayed cord clamping: a feasibility trial. Mat Health Neonatol Perinatol (2015) 1(1):15.10.1186/s40748-015-0016-3 PubMed DOI PMC
Grollmuss O, Demontoux S, Capderou A, Serraf A, Belli E. Electrical velocimetry as a tool for measuring cardiac output in small infants after heart surgery. Intensive Care Med (2012) 38(6):1032–9.10.1007/s00134-012-2530-3 PubMed DOI
Noori S, Drabu B, Soleymani S, Seri I. Continuous non-invasive cardiac output measurements in the neonate by electrical velocimetry: a comparison with echocardiography. Arch Dis Child Fetal Neonatal Ed (2012) 97:F340–3.10.1136/fetalneonatal-2011-301090 PubMed DOI
Song R, Rich W, Kim JH, Finer NN, Katheria AC. The use of electrical cardiometry for continuous cardiac output monitoring in preterm neonates: a validation study. Am J Perinatol (2014) 31(12):1105–10.10.1055/s-0034-1371707 PubMed DOI
Jakovljevic DG, Trenell MI, MacGowan GA. Bioimpedance and bioreactance methods for monitoring cardiac output. Best Prac Res Clin Anaesthesiol (2014) 28(4):381–94.10.1016/j.bpa.2014.09.003 PubMed DOI
Keren H, Burkhoff D, Squara P. Evaluation of a noninvasive continuous cardiac output monitoring system based on thoracic bioreactance. Am J Physiol Heart Circ Physiol (2007) 293(1):H583–9.10.1152/ajpheart.00195.2007 PubMed DOI
Ballestero Y, López-Herce J, Urbano J, Solana MJ, Botrán M, Bellón JM, et al. Measurement of cardiac output in children by bioreactance. Pediatr Cardiol (2011) 32(4):469–72.10.1007/s00246-011-9903-1 PubMed DOI
Weisz DE, Jain A, McNamara PJ, EL-Khuffash A. Non-invasive cardiac output monitoring in neonates using bioreactance: a comparison with echocardiography. Neonatology (2012) 102(1):61–7.10.1159/000337295 PubMed DOI
Weisz DE, Jain A, Ting J, McNamara PJ, El-Khuffash A. Non-invasive cardiac output monitoring in preterm infants undergoing patent ductus arteriosus ligation: a comparison with echocardiography. Neonatology (2014) 106(4):330–6.10.1159/000365278 PubMed DOI
Vergnaud E, Vidal C, Verchère J, Miatello J, Meyer P, Carli P, et al. Stroke volume variation and indexed stroke volume measured using bioreactance predict fluid responsiveness in postoperative children. Br J Anaesth (2015) 114(1):103–9.10.1093/bja/aeu361 PubMed DOI
Suehiro K, Joosten A, Murphy LS, Desebbe O, Alexander B, Kim SH, et al. Accuracy and precision of minimally-invasive cardiac output monitoring in children: a systematic review and meta-analysis. J Clin Monit Comput (2016) 30(5):603–20.10.1007/s10877-015-9757-9 PubMed DOI
Dey I, Sprivulis P. Emergency physicians can reliably assess emergency department patient cardiac output using the USCOM continuous wave Doppler cardiac output monitor. Emerg Med Australas (2005) 17(3):193–9.10.1111/j.1742-6723.2005.00722.x PubMed DOI
Knirsch W, Kretschmar O, Tomaske M, Stutz K, Nagdyman N, Balmer C, et al. Cardiac output measurement in children: comparison of the Ultrasound Cardiac Output Monitor with thermodilution cardiac output measurement. Intensive Care Med (2008) 34(6):1060–4.10.1007/s00134-008-1030-y PubMed DOI
Phillips R, Paradisis M, Evans N, Southwell D, Burstow D, West M, et al. Cardiac output measurement in preterm neonates: validation of USCOM against echocardiography. Crit Care (2006) 10(Suppl 1):343–343.10.1186/cc4677 DOI
Meyer S, Todd D, Shadboldt B. Assessment of portable continuous wave Doppler ultrasound (ultrasonic cardiac output monitor) for cardiac output measurements in neonates. J Paediatr Child Health (2009) 45(7–8):464–8.10.1111/j.1440-1754.2009.01535.x PubMed DOI
Huang L, Critchley LAH. Study to determine the repeatability of supra-sternal Doppler (ultrasound cardiac output monitor) during general anaesthesia: effects of scan quality, flow volume, and increasing age. Br J Anaesth (2013) 111(6):907–15.10.1093/bja/aet254 PubMed DOI
Chong SW, Peyton PJ. A meta-analysis of the accuracy and precision of the ultrasonic cardiac output monitor (USCOM). Anaesthesia (2012) 67(11):1266–71.10.1111/j.1365-2044.2012.07311.x PubMed DOI
Holtby H, Skowno JJ, Kor DJ, Flick RP, Uezono S. New technologies in pediatric anesthesia. Pediatric Anesth (2012) 22(10):952–61.10.1111/pan.12007 PubMed DOI
Groves AM, Chiesa G, Durighel G, Goldring ST, Fitzpatrick JA, Uribe S, et al. Functional cardiac MRI in preterm and term newborns. Arch Dis Child Fetal Neonatal Ed (2011) 96(2):F86–91.10.1136/adc.2010.189142 PubMed DOI PMC
Ficial B, Finnemore AE, Cox DJ, Broadhouse KM, Price AN, Durighel G, et al. Validation study of the accuracy of echocardiographic measurements of systemic blood flow volume in newborn infants. J Am Soc Echocardiogr (2013) 26(12):1365–71.10.1016/j.echo.2013.08.019 PubMed DOI PMC
Taylor K, Manlhiot C, McCrindle B, Grosse-Wortmann L, Holtby H. Poor accuracy of noninvasive cardiac output monitoring using bioimpedance cardiography [PhysioFlow(R)] compared to magnetic resonance imaging in pediatric patients. Anesth Analg (2012) 114(4):771–5.10.1213/ANE.0b013e318246c32c PubMed DOI
El-Khuffash AF, McNamara PJ. Neonatologist-performed functional echocardiography in the neonatal intensive care unit. Semin Fetal Neonatal Med (2011) 16(1):50–60.10.1016/j.siny.2010.05.001 PubMed DOI
Sehgal A, McNamara PJ. Does point-of-care functional echocardiography enhance cardiovascular care in the NICU? J Perinatol (2008) 28(11):729–35.10.1038/jp.2008.100 PubMed DOI
Mukerji A, Diambomba Y, Lee SK, Jain A. Use of targeted neonatal echocardiography and focused cardiac sonography in tertiary neonatal intensive care units. J Ultrasound Med (2016) 35(7):1579–91.10.7863/ultra.15.06037 PubMed DOI
El-Khuffash A, Herbozo C, Jain A, Lapointe A, McNamara PJ. Targeted neonatal echocardiography (TnECHO) service in a Canadian neonatal intensive care unit: a 4-year experience. J Perinatol (2013) 33(9):687–90.10.1038/jp.2013.42 PubMed DOI
Jain A, Sahni M, El-Khuffash A, Khadawardi E, Sehgal A, McNamara PJ. Use of targeted neonatal echocardiography to prevent postoperative cardiorespiratory instability after patent ductus arteriosus ligation. J Pediatr (2012) 160(4):584–9.e1.10.1016/j.jpeds.2011.09.027 PubMed DOI
El-Khuffash AF, Jain A, Weisz D, Mertens L, McNamara PJ. Assessment and treatment of post patent ductus arteriosus ligation syndrome. J Pediatr (2014) 165(1):46–52.e1.10.1016/j.jpeds.2014.03.048 PubMed DOI
Smith A, Breatnach CR, James AT, Franklin O, El-Khuffash A. Incidental findings on routine targeted neonatal echocardiography performed in preterm neonates younger than 29 weeks’ gestation. J Ultrasound Med (2017).10.1002/jum.14422 PubMed DOI
El-Khuffash A, Molloy EJ. Incidental finding of endocarditis in a preterm neonate. BMJ Case Rep (2009) 2009:bcr2006106625.10.1136/bcr.2006.106625 PubMed DOI PMC
Mertens L. Neonatologist performed echocardiography—hype, hope or nope. Eur J Pediatr (2016) 175(2):291–3.10.1007/s00431-015-2625-2 PubMed DOI
Singh Y, Gupta S, Groves AM, Gandhi A, Thomson J, Qureshi S, et al. Expert consensus statement ’Neonatologist-performed Echocardiography (NoPE)’-training and accreditation in UK. Eur J Pediatr (2016) 175(2):281–7.10.1007/s00431-015-2633-2 PubMed DOI
de Boode WP, Singh Y, Gupta S, Austin T, Bohlin K, Dempsey E, et al. Recommendations for neonatologist performed echocardiography in Europe: consensus statement endorsed by European Society for Paediatric Research (ESPR) and European Society for Neonatology (ESN). Pediatr Res (2016) 80:465.10.1038/pr.2016.126 PubMed DOI PMC
Chang AC. Determination of cardiac output in critically ill children: are we any closer to the ideal methodology? Pediatr Crit Care Med (2012) 13(1):99.10.1097/PCC.0b013e31822882d8 PubMed DOI
Azhibekov T, Soleymani S, Lee BH, Noori S, Seri I. Hemodynamic monitoring of the critically ill neonate: an eye on the future. Semin Fetal Neonatal Med (2015) 20(4):246–54.10.1016/j.siny.2015.03.003 PubMed DOI