The Role of Free Radicals in Autophagy Regulation: Implications for Ageing
Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection
Typ dokumentu časopisecké články, přehledy
PubMed
29682156
PubMed Central
PMC5846360
DOI
10.1155/2018/2450748
Knihovny.cz E-zdroje
- MeSH
- autofagie fyziologie MeSH
- lidé MeSH
- oxidační stres fyziologie MeSH
- reaktivní formy kyslíku metabolismus MeSH
- stárnutí fyziologie MeSH
- volné radikály metabolismus MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
- Názvy látek
- reaktivní formy kyslíku MeSH
- volné radikály MeSH
Reactive oxygen and nitrogen species (ROS and RNS, resp.) have been traditionally perceived solely as detrimental, leading to oxidative damage of biological macromolecules and organelles, cellular demise, and ageing. However, recent data suggest that ROS/RNS also plays an integral role in intracellular signalling and redox homeostasis (redoxtasis), which are necessary for the maintenance of cellular functions. There is a complex relationship between cellular ROS/RNS content and autophagy, which represents one of the major quality control systems in the cell. In this review, we focus on redox signalling and autophagy regulation with a special interest on ageing-associated changes. In the last section, we describe the role of autophagy and redox signalling in the context of Alzheimer's disease as an example of a prevalent age-related disorder.
Zobrazit více v PubMed
Lopez-Otin C., Blasco M. A., Partridge L., Serrano M., Kroemer G. The hallmarks of aging. Cell. 2013;153(6):1194–1217. doi: 10.1016/j.cell.2013.05.039. PubMed DOI PMC
Stadtman E. R. Protein oxidation and aging. Free Radical Research. 2006;40(12):1250–1258. doi: 10.1080/10715760600918142. PubMed DOI
Sena L. A., Chandel N. S. Physiological roles of mitochondrial reactive oxygen species. Molecular Cell. 2012;48(2):158–167. doi: 10.1016/j.molcel.2012.09.025. PubMed DOI PMC
Korovila I., Hugo M., Castro J. P., et al. Proteostasis, oxidative stress and aging. Redox Biology. 2017;13:550–567. doi: 10.1016/j.redox.2017.07.008. PubMed DOI PMC
Ferbeyre G. Aberrant signaling and senescence associated protein degradation. Experimental Gerontology. 2017 doi: 10.1016/j.exger.2017.06.016. In Press. PubMed DOI
Marfella R., D'Amico M., Esposito K., et al. The ubiquitin-proteasome system and inflammatory activity in diabetic atherosclerotic plaques: effects of rosiglitazone treatment. Diabetes. 2006;55(3):622–632. doi: 10.2337/diabetes.55.03.06.db05-0832. PubMed DOI
Gamerdinger M., Hajieva P., Kaya A. M., Wolfrum U., Hartl F. U., Behl C. Protein quality control during aging involves recruitment of the macroautophagy pathway by BAG3. The EMBO Journal. 2009;28(7):889–901. doi: 10.1038/emboj.2009.29. PubMed DOI PMC
Rubinsztein D. C., Marino G., Kroemer G. Autophagy and aging. Cell. 2011;146(5):682–695. doi: 10.1016/j.cell.2011.07.030. PubMed DOI
Taneike M., Yamaguchi O., Nakai A., et al. Inhibition of autophagy in the heart induces age-related cardiomyopathy. Autophagy. 2010;6(5):600–606. doi: 10.4161/auto.6.5.11947. PubMed DOI
Baraibar M. A., Friguet B. Chapter 7 - changes of the proteasomal system during the aging process. Progress in Molecular Biology and Translational Science. 2012;109:249–275. doi: 10.1016/B978-0-12-397863-9.00007-9. PubMed DOI
Tramutola A., Di Domenico F., Barone E., Perluigi M., Butterfield D. A. It is all about (U)biquitin: role of altered ubiquitin-proteasome system and UCHL1 in Alzheimer disease. Oxidative Medicine and Cellular Longevity. 2016;2016:12. doi: 10.1155/2016/2756068.2756068 PubMed DOI PMC
Hamon M. P., Bulteau A. L., Friguet B. Mitochondrial proteases and protein quality control in ageing and longevity. Ageing Research Reviews. 2015;23(Part A):56–66. doi: 10.1016/j.arr.2014.12.010. PubMed DOI
Hohn A., Jung T., Grune T. Pathophysiological importance of aggregated damaged proteins. Free Radical Biology & Medicine. 2014;71:70–89. doi: 10.1016/j.freeradbiomed.2014.02.028. PubMed DOI
Lambert A. J., Brand M. D. Reactive oxygen species production by mitochondria. Methods in Molecular Biology. 2009;554:165–181. doi: 10.1007/978-1-59745-521-3_11. PubMed DOI
Nauseef W. M. Biological roles for the NOX family NADPH oxidases. The Journal of Biological Chemistry. 2008;283(25):16961–16965. doi: 10.1074/jbc.R700045200. PubMed DOI PMC
Beckman J. S., Beckman T. W., Chen J., Marshall P. A., Freeman B. A. Apparent hydroxyl radical production by peroxynitrite: implications for endothelial injury from nitric oxide and superoxide. Proceeding of the National Academy of Sciences of the United States of America. 1990;87(4):1620–1624. doi: 10.1073/pnas.87.4.1620. PubMed DOI PMC
Antonenkov V. D., Grunau S., Ohlmeier S., Hiltunen J. K. Peroxisomes are oxidative organelles. Antioxidants & Redox Signaling. 2010;13(4):525–537. doi: 10.1089/ars.2009.2996. PubMed DOI
Santos C. X. C., Tanaka L. Y., Wosniak J., Jr, Laurindo F. R. M. Mechanisms and implications of reactive oxygen species generation during the unfolded protein response: roles of endoplasmic reticulum oxidoreductases, mitochondrial electron transport, and NADPH oxidase. Antioxidants & Redox Signaling. 2009;11(10):2409–2427. doi: 10.1089/ars.2009.2625. PubMed DOI
Valko M., Jomova K., Rhodes C. J., Kuca K., Musilek K. Redox- and non-redox-metal-induced formation of free radicals and their role in human disease. Archives of Toxicology. 2016;90(1):1–37. doi: 10.1007/s00204-015-1579-5. PubMed DOI
Huang J., Lam G. Y., Brumell J. H. Autophagy signaling through reactive oxygen species. Antioxidants & Redox Signaling. 2011;14(11):2215–2231. doi: 10.1089/ars.2010.3554. PubMed DOI
Aslan M., Ozben T. Oxidants in receptor tyrosine kinase signal transduction pathways. Antioxidants & Redox Signaling. 2003;5(6):781–788. doi: 10.1089/152308603770380089. PubMed DOI
Blanc A., Pandey N. R., Srivastava A. K. Synchronous activation of ERK 1/2, p38mapk and PKB/Akt signaling by H2O2 in vascular smooth muscle cells: potential involvement in vascular disease (review) International Journal of Molecular Medicine. 2003;11(2):229–234. doi: 10.3892/ijmm.11.2.229. PubMed DOI
Cho S. H., Lee C. H., Ahn Y., et al. Redox regulation of PTEN and protein tyrosine phosphatases in H2O2 mediated cell signaling. FEBS Letters. 2004;560(1–3):7–13. doi: 10.1016/S0014-5793(04)00112-7. PubMed DOI
van Montfort R. L. M., Congreve M., Tisi D., Carr R., Jhoti H. Oxidation state of the active-site cysteine in protein tyrosine phosphatase 1B. Nature. 2003;423(6941):773–777. doi: 10.1038/nature01681. PubMed DOI
Hayes J. D., Dinkova-Kostova A. T. The Nrf2 regulatory network provides an interface between redox and intermediary metabolism. Trends in Biochemical Sciences. 2014;39(4):199–218. doi: 10.1016/j.tibs.2014.02.002. PubMed DOI
Gloire G., Legrand-Poels S., Piette J. NF-κB activation by reactive oxygen species: fifteen years later. Biochemical Pharmacology. 2006;72(11):1493–1505. doi: 10.1016/j.bcp.2006.04.011. PubMed DOI
Celeste Simon M. Mitochondrial reactive oxygen species are required for hypoxic HIFα stabilization. Advances in Experimental Medicine and Biology. 2006;588:165–170. doi: 10.1007/978-0-387-34817-9_15. PubMed DOI
Liu B., Chen Y., St. Clair D. K. ROS and p53: a versatile partnership. Free Radical Biology & Medicine. 2008;44(8):1529–1535. doi: 10.1016/j.freeradbiomed.2008.01.011. PubMed DOI PMC
Allen I. C., Scull M. A., Moore C. B., et al. The NLRP3 inflammasome mediates in vivo innate immunity to influenza A virus through recognition of viral RNA. Immunity. 2009;30(4):556–565. doi: 10.1016/j.immuni.2009.02.005. PubMed DOI PMC
Gross O., Poeck H., Bscheider M., et al. Syk kinase signalling couples to the Nlrp3 inflammasome for anti-fungal host defence. Nature. 2009;459(7245):433–436. doi: 10.1038/nature07965. PubMed DOI
Said-Sadier N., Padilla E., Langsley G., Ojcius D. M. Aspergillus fumigatus stimulates the NLRP3 inflammasome through a pathway requiring ROS production and the Syk tyrosine kinase. PLoS One. 2010;5(4, article e10008) doi: 10.1371/journal.pone.0010008. PubMed DOI PMC
Pan J. S., Hong M. Z., Ren J. L. Reactive oxygen species: a double-edged sword in oncogenesis. World Journal of Gastroenterology. 2009;15(14):1702–1707. doi: 10.3748/wjg.15.1702. PubMed DOI PMC
Abello N., Kerstjens H. A. M., Postma D. S., Bischoff R. Protein tyrosine nitration: selectivity, physicochemical and biological consequences, denitration, and proteomics methods for the identification of tyrosine-nitrated proteins. Journal of Proteome Research. 2009;8(7):3222–3238. doi: 10.1021/pr900039c. PubMed DOI
Gow A. J., Duran D., Malcolm S., Ischiropoulos H. Effects of peroxynitrite-induced protein modifications on tyrosine phosphorylation and degradation. FEBS Letters. 1996;385(1-2):63–66. doi: 10.1016/0014-5793(96)00347-X. PubMed DOI
van der Vliet A., Hristova M., Cross C. E., Eiserich J. P., Goldkorn T. Peroxynitrite induces covalent dimerization of epidermal growth factor receptors in A431 epidermoid carcinoma cells. The Journal of Biological Chemistry. 1998;273(48):31860–31866. doi: 10.1074/jbc.273.48.31860. PubMed DOI
Sies H., Cadenas E. Oxidative stress: damage to intact cells and organs. Philosophical Transactions of the Royal Society B: Biological Sciences. 1985;311(1152):617–631. doi: 10.1098/rstb.1985.0168. PubMed DOI
Sies H. Oxidative stress: a concept in redox biology and medicine. Redox Biology. 2015;4:180–183. doi: 10.1016/j.redox.2015.01.002. PubMed DOI PMC
Vistoli G., De Maddis D., Cipak A., Zarkovic N., Carini M., Aldini G. Advanced glycoxidation and lipoxidation end products (AGEs and ALEs): an overview of their mechanisms of formation. Free Radical Research. 2013;47(Supplement 1):3–27. doi: 10.3109/10715762.2013.815348. PubMed DOI
Haucke E., Navarrete-Santos A., Simm A., Silber R. E., Hofmann B. Glycation of extracellular matrix proteins impairs migration of immune cells. Wound Repair and Regeneration. 2014;22(2):239–245. doi: 10.1111/wrr.12144. PubMed DOI
Schmidt A. M., Hori O., Cao R., et al. RAGE: a novel cellular receptor for advanced glycation end products. Diabetes. 1996;45(Supplement_3):S77–S80. doi: 10.2337/diab.45.3.S77. PubMed DOI
Li J. H., Wang W., Huang X. R., et al. Advanced glycation end products induce tubular epithelial-myofibroblast transition through the RAGE-ERK1/2 MAP kinase signaling pathway. The American Journal of Pathology. 2004;164(4):1389–1397. doi: 10.1016/S0002-9440(10)63225-7. PubMed DOI PMC
Tanikawa T., Okada Y., Tanikawa R., Tanaka Y. Advanced glycation end products induce calcification of vascular smooth muscle cells through RAGE/p38 MAPK. Journal of Vascular Research. 2009;46(6):572–580. doi: 10.1159/000226225. PubMed DOI
Guimaraes E. L. M., Empsen C., Geerts A., van Grunsven L. A. Advanced glycation end products induce production of reactive oxygen species via the activation of NADPH oxidase in murine hepatic stellate cells. Journal of Hepatology. 2010;52(3):389–397. doi: 10.1016/j.jhep.2009.12.007. PubMed DOI
Groitl B., Jakob U. Thiol-based redox switches. Biochimica et Biophysica Acta (BBA) - Proteins and Proteomics. 2014;1844(8):1335–1343. doi: 10.1016/j.bbapap.2014.03.007. PubMed DOI PMC
Antelmann H., Helmann J. D. Thiol-based redox switches and gene regulation. Antioxidants & Redox Signaling. 2011;14(6):1049–1063. doi: 10.1089/ars.2010.3400. PubMed DOI PMC
Jakob U., Muse W., Eser M., Bardwell J. C. A. Chaperone activity with a redox switch. Cell. 1999;96(3):341–352. doi: 10.1016/S0092-8674(00)80547-4. PubMed DOI
Winter J., Linke K., Jatzek A., Jakob U. Severe oxidative stress causes inactivation of DnaK and activation of the redox-regulated chaperone Hsp33. Molecular Cell. 2005;17(3):381–392. doi: 10.1016/j.molcel.2004.12.027. PubMed DOI
Klomsiri C., Karplus P. A., Poole L. B. Cysteine-based redox switches in enzymes. Antioxidants & Redox Signaling. 2011;14(6):1065–1077. doi: 10.1089/ars.2010.3376. PubMed DOI PMC
Rhee S. G., Chae H. Z., Kim K. Peroxiredoxins: a historical overview and speculative preview of novel mechanisms and emerging concepts in cell signaling. Free Radical Biology & Medicine. 2005;38(12):1543–1552. doi: 10.1016/j.freeradbiomed.2005.02.026. PubMed DOI
Nagy P., Karton A., Betz A., et al. Model for the exceptional reactivity of peroxiredoxins 2 and 3 with hydrogen peroxide: a kinetic and computational study. The Journal of Biological Chemistry. 2011;286(20):18048–18055. doi: 10.1074/jbc.M111.232355. PubMed DOI PMC
Rhee S. G., Jeong W., Chang T. S., Woo H. A. Sulfiredoxin, the cysteine sulfinic acid reductase specific to 2-Cys peroxiredoxin: its discovery, mechanism of action, and biological significance. Kidney International. 2007;72(Supplement 106):S3–S8. doi: 10.1038/sj.ki.5002380. PubMed DOI
Moon J. C., Kim G. M., Kim E. K., et al. Reversal of 2-Cys peroxiredoxin oligomerization by sulfiredoxin. Elsevier. 2013;432(2):291–295. doi: 10.1016/j.bbrc.2013.01.114. PubMed DOI
Berndt C., Lillig C. H., Holmgren A. Thiol-based mechanisms of the thioredoxin and glutaredoxin systems: implications for diseases in the cardiovascular system. American Journal of Physiology-Heart and Circulatory Physiology. 2007;292(3):H1227–H1236. doi: 10.1152/ajpheart.01162.2006. PubMed DOI
Starke D. W., Chock P. B., Mieyal J. J. Glutathione-thiyl radical scavenging and transferase properties of human glutaredoxin (thioltransferase). Potential role in redox signal transduction. The Journal of Biological Chemistry. 2003;278(17):14607–14613. doi: 10.1074/jbc.M210434200. PubMed DOI
Ruoppolo M., Lundstrom-Ljung J., Talamo F., Pucci P., Marino G. Effect of glutaredoxin and protein disulfide isomerase on the glutathione-dependent folding of ribonuclease A. Biochemistry. 1997;36(40):12259–12267. doi: 10.1021/bi970851s. PubMed DOI
Lillig C. H., Berndt C., Vergnolle O., et al. Characterization of human glutaredoxin 2 as iron–sulfur protein: a possible role as redox sensor. Proceeding of the National Academy of Sciences of the United States of America. 2005;102(23):8168–8173. doi: 10.1073/pnas.0500735102. PubMed DOI PMC
Berndt C., Hudemann C., Hanschmann E. M., Axelsson R., Holmgren A., Lillig C. H. How does iron–sulfur cluster coordination regulate the activity of human glutaredoxin 2? Antioxidants & Redox Signaling. 2007;9(1):151–157. doi: 10.1089/ars.2007.9.151. PubMed DOI
Feng Y., Zhong N., Rouhier N., et al. Structural insight into poplar glutaredoxin C1 with a bridging iron-sulfur cluster at the active site. Biochemistry. 2006;45(26):7998–8008. doi: 10.1021/bi060444t. PubMed DOI
Kalinina E. V., Chernov N. N., Novichkova M. D. Role of glutathione, glutathione transferase, and glutaredoxin in regulation of redox-dependent processes. Biochemistry. 2014;79(13):1562–1583. doi: 10.1134/S0006297914130082. PubMed DOI
Zhang D. D., Lo S. C., Cross J. V., Templeton D. J., Hannink M. Keap1 is a redox-regulated substrate adaptor protein for a Cul3-dependent ubiquitin ligase complex. Molecular and Cell Biology. 2004;24(24):10941–10953. doi: 10.1128/MCB.24.24.10941-10953.2004. PubMed DOI PMC
Pajares M., Jimenez-Moreno N., Dias I. H. K., et al. Redox control of protein degradation. Redox Biology. 2015;6:409–420. doi: 10.1016/j.redox.2015.07.003. PubMed DOI PMC
Aiken C. T., Kaake R. M., Wang X., Huang L. Oxidative stress-mediated regulation of proteasome complexes. Molecular & Cellular Proteomics. 2011;10(5, article R110.006924) doi: 10.1074/mcp.M110.006924. PubMed DOI PMC
Farout L., Friguet B. Proteasome function in aging and oxidative stress: implications in protein maintenance failure. Antioxidants & Redox Signaling. 2006;8(1-2):205–216. doi: 10.1089/ars.2006.8.205. PubMed DOI
Ariosa A. R., Klionsky D. J. Autophagy core machinery: overcoming spatial barriers in neurons. Journal of Molecular Medicine. 2016;94(11):1217–1227. doi: 10.1007/s00109-016-1461-9. PubMed DOI PMC
Chiang H. L., Terlecky S. R., Plant C. P., Dice J. F. A role for a 70-kilodalton heat shock protein in lysosomal degradation of intracellular proteins. Science. 1989;246(4928):382–385. doi: 10.1126/science.2799391. PubMed DOI
Cuervo A. M., Dice J. F. A receptor for the selective uptake and degradation of proteins by lysosomes. Science. 1996;273(5274):501–503. doi: 10.1126/science.273.5274.501. PubMed DOI
Xilouri M., Stefanis L. Chaperone mediated autophagy in aging: starve to prosper. Ageing Research Reviews. 2016;32:13–21. doi: 10.1016/j.arr.2016.07.001. PubMed DOI
Bandyopadhyay U., Kaushik S., Varticovski L., Cuervo A. M. The chaperone-mediated autophagy receptor organizes in dynamic protein complexes at the lysosomal membrane. Molecular Cell Biology. 2008;28(18):5747–5763. doi: 10.1128/MCB.02070-07. PubMed DOI PMC
Li W. W., Li J., Bao J. K. Microautophagy: lesser-known self-eating. Cellular and Molecular Life Sciences. 2012;69(7):1125–1136. doi: 10.1007/s00018-011-0865-5. PubMed DOI PMC
Pan T., Rawal P., Wu Y., Xie W., Jankovic J., Le W. Rapamycin protects against rotenone-induced apoptosis through autophagy induction. Neuroscience. 2009;164(2):541–551. doi: 10.1016/j.neuroscience.2009.08.014. PubMed DOI
Xiong N., Jia M., Chen C., et al. Potential autophagy enhancers attenuate rotenone-induced toxicity in SH-SY5Y. Neuroscience. 2011;199:292–302. doi: 10.1016/j.neuroscience.2011.10.031. PubMed DOI
Azad M. B., Chen Y., Gibson S. B. Regulation of autophagy by reactive oxygen species (ROS): implications for cancer progression and treatment. Antioxidants & Redox Signaling. 2009;11(4):777–790. doi: 10.1089/ars.2008.2270. PubMed DOI
Deruy E., Gosselin K., Vercamer C., et al. MnSOD upregulation induces autophagic programmed cell death in senescent keratinocytes. PLoS One. 2010;5(9, article e12712) doi: 10.1371/journal.pone.0012712. PubMed DOI PMC
Scott J. W., Norman D. G., Hawley S. A., Kontogiannis L., Hardie D. G. Protein kinase substrate recognition studied using the recombinant catalytic domain of AMP-activated protein kinase and a model substrate. Journal of Molecular Biology. 2002;317(2):309–323. doi: 10.1006/jmbi.2001.5316. PubMed DOI
Gwinn D. M., Shackelford D. B., Egan D. F., et al. AMPK phosphorylation of raptor mediates a metabolic checkpoint. Molecular Cell. 2008;30(2):214–226. doi: 10.1016/j.molcel.2008.03.003. PubMed DOI PMC
Kim J., Kundu M., Viollet B., Guan K. L. AMPK and mTOR regulate autophagy through direct phosphorylation of Ulk1. Nature Cell Biology. 2011;13(2):132–141. doi: 10.1038/ncb2152. PubMed DOI PMC
Zmijewski J. W., Banerjee S., Bae H., Friggeri A., Lazarowski E. R., Abraham E. Exposure to hydrogen peroxide induces oxidation and activation of AMP-activated protein kinase. The Journal of Biological Chemistry. 2010;285(43):33154–33164. doi: 10.1074/jbc.M110.143685. PubMed DOI PMC
Cardaci S., Filomeni G., Ciriolo M. R. Redox implications of AMPK-mediated signal transduction beyond energetic clues. Journal of Cell Science. 2012;125(9):2115–2125. doi: 10.1242/jcs.095216. PubMed DOI
Mungai P. T., Waypa G. B., Jairaman A., et al. Hypoxia triggers AMPK activation through reactive oxygen species-mediated activation of calcium release-activated calcium channels. Molecular and Cell Biology. 2011;31(17):3531–3545. doi: 10.1128/MCB.05124-11. PubMed DOI PMC
Emerling B. M., Weinberg F., Snyder C., et al. Hypoxic activation of AMPK is dependent on mitochondrial ROS but independent of an increase in AMP/ATP ratio. Free Radical Biology & Medicine. 2009;46(10):1386–1391. doi: 10.1016/j.freeradbiomed.2009.02.019. PubMed DOI PMC
Li L., Chen Y., Gibson S. B. Starvation-induced autophagy is regulated by mitochondrial reactive oxygen species leading to AMPK activation. Cellular Signalling. 2013;25(1):50–65. doi: 10.1016/j.cellsig.2012.09.020. PubMed DOI
Alexander A., Kim J., Walker C. L. ATM engages the TSC2/mTORC1 signaling node to regulate autophagy. Autophagy. 2010;6(5):672–673. doi: 10.4161/auto.6.5.12509. PubMed DOI PMC
Fujino G., Noguchi T., Matsuzawa A., et al. Thioredoxin and TRAF family proteins regulate reactive oxygen species-dependent activation of ASK1 through reciprocal modulation of the N-terminal homophilic interaction of ASK1. Molecular and Cellular Biology. 2007;27(23):8152–8163. doi: 10.1128/MCB.00227-07. PubMed DOI PMC
Wei Y., Pattingre S., Sinha S., Bassik M., Levine B. JNK1-mediated phosphorylation of Bcl-2 regulates starvation-induced autophagy. Molecular Cell. 2008;30(6):678–688. doi: 10.1016/j.molcel.2008.06.001. PubMed DOI PMC
Sarkar S., Korolchuk V. I., Renna M., et al. Complex inhibitory effects of nitric oxide on autophagy. Molecular Cell. 2011;43(1):19–32. doi: 10.1016/j.molcel.2011.04.029. PubMed DOI PMC
Azad N., Vallyathan V., Wang L., et al. S-nitrosylation of Bcl-2 inhibits its ubiquitin-proteasomal degradation. A novel antiapoptotic mechanism that suppresses apoptosis. The Journal of Biological Chemistry. 2006;281(45):34124–34134. doi: 10.1074/jbc.M602551200. PubMed DOI
Ma L., Chen Z., Erdjument-Bromage H., Tempst P., Pandolfi P. P. Phosphorylation and functional inactivation of TSC2 by Erk implications for tuberous sclerosis and cancer pathogenesis. Cell. 2005;121(2):179–193. doi: 10.1016/j.cell.2005.02.031. PubMed DOI
Lau A., Wang X. J., Zhao F., et al. A noncanonical mechanism of Nrf2 activation by autophagy deficiency: direct interaction between Keap1 and p62. Molecular and Cellular Biology. 2010;30(13):3275–3285. doi: 10.1128/MCB.00248-10. PubMed DOI PMC
Komatsu M., Kurokawa H., Waguri S., et al. The selective autophagy substrate p62 activates the stress responsive transcription factor Nrf2 through inactivation of Keap1. Nature Cell Biology. 2010;12(3):213–223. doi: 10.1038/ncb2021. PubMed DOI
Fan W., Tang Z., Chen D., et al. Keap1 facilitates p62-mediated ubiquitin aggregate clearance via autophagy. Autophagy. 2010;6(5):614–621. doi: 10.4161/auto.6.5.12189. PubMed DOI PMC
Taguchi K., Fujikawa N., Komatsu M., et al. Keap1 degradation by autophagy for the maintenance of redox homeostasis. Proceeding of the National Academy of Sciences of the United States of America. 2012;109(34):13561–13566. doi: 10.1073/pnas.1121572109. PubMed DOI PMC
Copple I. M., Goldring C. E., Kitteringham N. R., Park B. K. The keap1-nrf2 cellular defense pathway: mechanisms of regulation and role in protection against drug-induced toxicity. In: Uetrecht J., editor. Adverse Drug Reactions, Vol 196. Berlin, Heidelberg: Springer; 2010. pp. 233–266. (Handbook of Experimental Pharmacology). PubMed DOI
Jain A., Lamark T., Sjøttem E., et al. p62/SQSTM1 is a target gene for transcription factor NRF2 and creates a positive feedback loop by inducing antioxidant response element-driven gene transcription. The Journal of Biological Chemistry. 2010;285(29):22576–22591. doi: 10.1074/jbc.M110.118976. PubMed DOI PMC
Hashimoto K., Simmons A. N., Kajino-Sakamoto R., Tsuji Y., Ninomiya-Tsuji J. TAK1 regulates the Nrf2 antioxidant system through modulating p62/SQSTM1. Antioxidants & Redox Signaling. 2016;25(17):953–964. doi: 10.1089/ars.2016.6663. PubMed DOI PMC
Jo C., Gundemir S., Pritchard S., Jin Y. N., Rahman I., Johnson G. V. Nrf2 reduces levels of phosphorylated tau protein by inducing autophagy adaptor protein NDP52. Nature Communications. 2014;5, article 3496 doi: 10.1038/ncomms4496. PubMed DOI PMC
Pajares M., Jiménez-Moreno N., García-Yagüe Á. J., et al. Transcription factor NFE2L2/NRF2 is a regulator of macroautophagy genes. Autophagy. 2016;12(10):1902–1916. doi: 10.1080/15548627.2016.1208889. PubMed DOI PMC
Pajares M., Cuadrado A., Rojo A. I. Modulation of proteostasis by transcription factor NRF2 and impact in neurodegenerative diseases. Redox Biology. 2017;11:543–553. doi: 10.1016/j.redox.2017.01.006. PubMed DOI PMC
Criollo A., Senovilla L., Authier H., et al. The IKK complex contributes to the induction of autophagy. The EMBO Journal. 2010;29(3):619–631. doi: 10.1038/emboj.2009.364. PubMed DOI PMC
Hacker H., Karin M. Regulation and function of IKK and IKK-related kinases. Science's STKE. 2006;2006, article re13(357) doi: 10.1126/stke.3572006re13. PubMed DOI
Comb W. C., Cogswell P., Sitcheran R., Baldwin A. S. IKK-dependent, NF-κB-independent control of autophagic gene expression. Oncogene. 2011;30(14):1727–1732. doi: 10.1038/onc.2010.553. PubMed DOI PMC
Qing G., Yan P., Qu Z., Liu H., Xiao G. Hsp90 regulates processing of NF-κB2 p100 involving protection of NF-κB-inducing kinase (NIK) from autophagy-mediated degradation. Cell Research. 2007;17(6):520–530. doi: 10.1038/cr.2007.47. PubMed DOI
Aoi W., Naito Y., Yoshikawa T. Role of oxidative stress in impaired insulin signaling associated with exercise-induced muscle damage. Free Radical Biology & Medicine. 2013;65:1265–1272. doi: 10.1016/j.freeradbiomed.2013.09.014. PubMed DOI
Copetti T., Bertoli C., Dalla E., Demarchi F., Schneider C. p65/RelA modulates BECN1 transcription and autophagy. Molecular and Cellular Biology. 2009;29(10):2594–2608. doi: 10.1128/MCB.01396-08. PubMed DOI PMC
Djavaheri-Mergny M., Amelotti M., Mathieu J., et al. NF-κB activation represses tumor necrosis factor-α-induced autophagy. The Journal of Biological Chemistry. 2006;281(41):30373–30382. doi: 10.1074/jbc.M602097200. PubMed DOI
Criollo A., Chereau F., Malik S. A., et al. Autophagy is required for the activation of NFκB. Cell Cycle. 2012;11(1):194–199. doi: 10.4161/cc.11.1.18669. PubMed DOI
Wardyn J. D., Ponsford A. H., Sanderson C. M. Dissecting molecular cross-talk between Nrf2 and NF-κB response pathways. Biochemical Society Transactions. 2015;43(4):621–626. doi: 10.1042/BST20150014. PubMed DOI PMC
Kim J. E., You D. J., Lee C., Ahn C., Seong J. Y., Hwang J. I. Suppression of NF-κB signaling by KEAP1 regulation of IKKβ activity through autophagic degradation and inhibition of phosphorylation. Cellular Signalling. 2010;22(11):1645–1654. doi: 10.1016/j.cellsig.2010.06.004. PubMed DOI
Salminen A., Kaarniranta K., Kauppinen A. Crosstalk between oxidative stress and SIRT1: impact on the aging process. International Journal of Molecular Sciences. 2013;14(2):3834–3859. doi: 10.3390/ijms14023834. PubMed DOI PMC
Caito S., Rajendrasozhan S., Cook S., et al. SIRT1 is a redox-sensitive deacetylase that is post-translationally modified by oxidants and carbonyl stress. The FASEB Journal. 2010;24(9):3145–3159. doi: 10.1096/fj.09-151308. PubMed DOI PMC
Lee I. H., Cao L., Mostoslavsky R., et al. A role for the NAD-dependent deacetylase Sirt1 in the regulation of autophagy. Proceeding of the National Academy of Sciences of the United States of America. 2008;105(9):3374–3379. doi: 10.1073/pnas.0712145105. PubMed DOI PMC
Hariharan N., Maejima Y., Nakae J., Paik J., Depinho R. A., Sadoshima J. Deacetylation of FoxO by Sirt1 plays an essential role in mediating starvation-induced autophagy in cardiac myocytes. Circulation Research. 2010;107(12):1470–1482. doi: 10.1161/CIRCRESAHA.110.227371. PubMed DOI PMC
Mammucari C., Milan G., Romanello V., et al. FoxO3 controls autophagy in skeletal muscle in vivo. Cell Metabolism. 2007;6(6):458–471. doi: 10.1016/j.cmet.2007.11.001. PubMed DOI
Scherz-Shouval R., Shvets E., Fass E., Shorer H., Gil L., Elazar Z. Reactive oxygen species are essential for autophagy and specifically regulate the activity of Atg4. The EMBO Journal. 2007;26(7):1749–1760. doi: 10.1038/sj.emboj.7601623. PubMed DOI PMC
Narendra D., Tanaka A., Suen D. F., Youle R. J. Parkin is recruited selectively to impaired mitochondria and promotes their autophagy. Journal of Cell Biology. 2008;183(5):795–803. doi: 10.1083/jcb.200809125. PubMed DOI PMC
Hampe C., Ardila-Osorio H., Fournier M., Brice A., Corti O. Biochemical analysis of Parkinson’s disease-causing variants of Parkin, an E3 ubiquitin–protein ligase with monoubiquitylation capacity. Human Molecular Genetics. 2006;15(13):2059–2075. doi: 10.1093/hmg/ddl131. PubMed DOI
Meng F., Yao D., Shi Y., et al. Oxidation of the cysteine-rich regions of Parkin perturbs its E3 ligase activity and contributes to protein aggregation. Molecular Neurodegeneration. 2011;6(1):p. 34. doi: 10.1186/1750-1326-6-34. PubMed DOI PMC
Vandiver M. S., Paul B. D., Xu R., et al. Sulfhydration mediates neuroprotective actions of Parkin. Nature Communications. 2013;4:p. 1626. doi: 10.1038/ncomms2623. PubMed DOI PMC
Canet-Aviles R. M., Wilson M. A., Miller D. W., et al. The Parkinson’s disease protein DJ-1 is neuroprotective due to cysteine-sulfinic acid-driven mitochondrial localization. Proceeding of the National Academy of Sciences of the United States of America. 2004;101(24):9103–9108. doi: 10.1073/pnas.0402959101. PubMed DOI PMC
Kiffin R., Christian C., Knecht E., Cuervo A. M. Activation of chaperone-mediated autophagy during oxidative stress. Molecular Biology of the Cell. 2004;15(11):4829–4840. doi: 10.1091/mbc.E04-06-0477. PubMed DOI PMC
Massey A. C., Kaushik S., Sovak G., Kiffin R., Cuervo A. M. Consequences of the selective blockage of chaperone-mediated autophagy. Proceeding of the National Academy of Sciences of the United States of America. 2006;103(15):5805–5810. doi: 10.1073/pnas.0507436103. PubMed DOI PMC
Gracy R. W., Talent J. M., Zvaigzne A. I. Molecular wear and tear leads to terminal marking and the unstable isoforms of aging. Journal of Experimental Zoology. 1998;282(1-2):18–27. doi: 10.1002/(SICI)1097-010X(199809/10)282:1/2<18::AID-JEZ5>3.0.CO;2-Q. PubMed DOI
Soubannier V., McLelland G. L., Zunino R., et al. A vesicular transport pathway shuttles cargo from mitochondria to lysosomes. Current Biology. 2012;22(2):135–141. doi: 10.1016/j.cub.2011.11.057. PubMed DOI
Soubannier V., Rippstein P., Kaufman B. A., Shoubridge E. A., McBride H. M. Reconstitution of mitochondria derived vesicle formation demonstrates selective enrichment of oxidized cargo. PLoS One. 2012;7(12, article e52830) doi: 10.1371/journal.pone.0052830. PubMed DOI PMC
Paxinou E., Chen Q., Weisse M., et al. Induction of α-synuclein aggregation by intracellular nitrative insult. The Journal of Neuroscience. 2001;21(20):8053–8061. PubMed PMC
Cuervo A. M., Stefanis L., Fredenburg R., Lansbury P. T., Sulzer D. Impaired degradation of mutant α-synuclein by chaperone-mediated autophagy. Science. 2004;305(5688):1292–1295. doi: 10.1126/science.1101738. PubMed DOI
Martinez-Vicente M., Talloczy Z., Kaushik S., et al. Dopamine-modified α-synuclein blocks chaperone-mediated autophagy. The Journal of Clinical Investigation. 2008;118(2):777–788. doi: 10.1172/JCI32806. PubMed DOI PMC
Kregel K. C., Zhang H. J. An integrated view of oxidative stress in aging: basic mechanisms, functional effects, and pathological considerations. American Journal of Physiology-Regulatory, Integrative and Comparative Physiology. 2007;292(1):R18–R36. doi: 10.1152/ajpregu.00327.2006. PubMed DOI
Hagen T. M. Oxidative stress, redox imbalance, and the aging process. Antioxidants & Redox Signaling. 2003;5(5):503–506. doi: 10.1089/152308603770310149. PubMed DOI
Stadtman E. R., Van Remmen H., Richardson A., Wehr N. B., Levine R. L. Methionine oxidation and aging. Biochimica et Biophysica Acta (BBA) - Proteins and Proteomics. 2005;1703(2):135–140. doi: 10.1016/j.bbapap.2004.08.010. PubMed DOI
Salmon A. B., Kim G., Liu C., et al. Effects of transgenic methionine sulfoxide reductase A (MsrA) expression on lifespan and age-dependent changes in metabolic function in mice. Redox Biology. 2016;10:251–256. doi: 10.1016/j.redox.2016.10.012. PubMed DOI PMC
Lim D. H., Han J. Y., Kim J. R., Lee Y. S., Kim H. Y. Methionine sulfoxide reductase B in the endoplasmic reticulum is critical for stress resistance and aging in Drosophila. Biochemical and Biophysical Research Communications. 2012;419(1):20–26. doi: 10.1016/j.bbrc.2012.01.099. PubMed DOI
Fomenko D. E., Novoselov S. V., Natarajan S. K., et al. MsrB1 (methionine-R-sulfoxide reductase 1) knock-out mice: roles of MsrB1 in redox regulation and identification of a novel selenoprotein form. The Journal of Biological Chemistry. 2009;284(9):5986–5993. doi: 10.1074/jbc.M805770200. PubMed DOI PMC
Bruns D. R., Drake J. C., Biela L. M., Peelor F. F., 3rd, Miller B. F., Hamilton K. L. Nrf2 signaling and the slowed aging phenotype: evidence from long-lived models. Oxidative Medicine and Cellular Longevity. 2015;2015:15. doi: 10.1155/2015/732596.732596 PubMed DOI PMC
Suh J. H., Shenvi S. V., Dixon B. M., et al. Decline in transcriptional activity of Nrf2 causes age-related loss of glutathione synthesis, which is reversible with lipoic acid. Proceeding of the National Academy of Sciences of the United States of America. 2004;101(10):3381–3386. doi: 10.1073/pnas.0400282101. PubMed DOI PMC
Rahman M. M., Sykiotis G. P., Nishimura M., Bodmer R., Bohmann D. Declining signal dependence of Nrf2-MafS-regulated gene expression correlates with aging phenotypes. Aging Cell. 2013;12(4):554–562. doi: 10.1111/acel.12078. PubMed DOI PMC
Nakamura A., Osonoi T., Terauchi Y. Relationship between urinary sodium excretion and pioglitazone-induced edema. Journal of Diabetes Investigation. 2010;1(5):208–211. doi: 10.1111/j.2040-1124.2010.00046.x. PubMed DOI PMC
Dice J. F. Altered degradation of proteins microinjected into senescent human fibroblasts. The Journal of Biological Chemistry. 1982;257(24):14624–14627. PubMed
Matecic M., Smith D. L., Pan X., et al. A microarray-based genetic screen for yeast chronological aging factors. PLoS Genetics. 2010;6(4, article e1000921) doi: 10.1371/journal.pgen.1000921. PubMed DOI PMC
Madeo F., Zimmermann A., Maiuri M. C., Kroemer G. Essential role for autophagy in life span extension. The Journal of Clinical Investigation. 2015;125(1):85–93. doi: 10.1172/JCI73946. PubMed DOI PMC
Simonsen A., Cumming R. C., Brech A., Isakson P., Schubert D. R., Finley K. D. Promoting basal levels of autophagy in the nervous system enhances longevity and oxidant resistance in adult drosophila. Autophagy. 2008;4(2):176–184. doi: 10.4161/auto.5269. PubMed DOI
Eisenberg T., Knauer H., Schauer A., et al. Induction of autophagy by spermidine promotes longevity. Nature Cell Biology. 2009;11(11):1305–1314. doi: 10.1038/ncb1975. PubMed DOI
Wilkinson J. E., Burmeister L., Brooks S. V., et al. Rapamycin slows aging in mice. Aging Cell. 2012;11(4):675–682. doi: 10.1111/j.1474-9726.2012.00832.x. PubMed DOI PMC
Harrison D. E., Strong R., Sharp Z. D., et al. Rapamycin fed late in life extends lifespan in genetically heterogeneous mice. Nature. 2009;460(7253):392–395. doi: 10.1038/nature08221. PubMed DOI PMC
Pyo J. O., Yoo S. M., Ahn H. H., et al. Overexpression of Atg5 in mice activates autophagy and extends lifespan. Nature Communications. 2013;4, article 2300 doi: 10.1038/ncomms3300. PubMed DOI PMC
Perez V. I., Buffenstein R., Masamsetti V., et al. Protein stability and resistance to oxidative stress are determinants of longevity in the longest-living rodent, the naked mole-rat. Proceeding of the National Academy of Sciences of the United States of America. 2009;106(9):3059–3064. doi: 10.1073/pnas.0809620106. PubMed DOI PMC
Terman A. The effect of age on formation and elimination of autophagic vacuoles in mouse hepatocytes. Gerontology. 1995;41(2):319–326. doi: 10.1159/000213753. PubMed DOI
Stupina A. S., Terman A. K., Kvitnitskaia-Ryzhova T., Mezhiborskaia N. A., Zherebitskii V. A. The age-related characteristics of autophagocytosis in different tissues of laboratory animals. Tsitologiia i Genetika. 1994;28(6):15–20. PubMed
Demontis F., Perrimon N. FOXO/4E-BP signaling in Drosophila muscles regulates organism-wide proteostasis during aging. Cell. 2010;143(5):813–825. doi: 10.1016/j.cell.2010.10.007. PubMed DOI PMC
Carnio S., LoVerso F., Baraibar M. A., et al. Autophagy impairment in muscle induces neuromuscular junction degeneration and precocious aging. Cell Reports. 2014;8(5):1509–1521. doi: 10.1016/j.celrep.2014.07.061. PubMed DOI PMC
Lipinski M. M., Zheng B., Lu T., et al. Genome-wide analysis reveals mechanisms modulating autophagy in normal brain aging and in Alzheimer’s disease. Proceeding of the National Academy of Sciences of the United States of America. 2010;107(32):14164–14169. doi: 10.1073/pnas.1009485107. PubMed DOI PMC
Ott C., Konig J., Hohn A., Jung T., Grune T. Macroautophagy is impaired in old murine brain tissue as well as in senescent human fibroblasts. Redox Biology. 2016;10:266–273. doi: 10.1016/j.redox.2016.10.015. PubMed DOI PMC
Del Roso A., Vittorini S., Cavallini G., et al. Ageing-related changes in the in vivo function of rat liver macroautophagy and proteolysis. Experimental Gerontology. 2003;38(5):519–527. doi: 10.1016/S0531-5565(03)00002-0. PubMed DOI
Hohn A., Grune T. Lipofuscin: formation, effects and role of macroautophagy. Redox Biology. 2013;1(1):140–144. doi: 10.1016/j.redox.2013.01.006. PubMed DOI PMC
Benavides S. H., Monserrat A. J., Farina S., Porta E. A. Sequential histochemical studies of neuronal lipofuscin in human cerebral cortex from the first to the ninth decade of life. Archives of Gerontology and Geriatrics. 2002;34(3):219–231. doi: 10.1016/S0167-4943(01)00223-0. PubMed DOI
Hohn A., Sittig A., Jung T., Grimm S., Grune T. Lipofuscin is formed independently of macroautophagy and lysosomal activity in stress-induced prematurely senescent human fibroblasts. Free Radical Biology & Medicine. 2012;53(9):1760–1769. doi: 10.1016/j.freeradbiomed.2012.08.591. PubMed DOI
Brunk U. T., Terman A. The mitochondrial-lysosomal axis theory of aging: accumulation of damaged mitochondria as a result of imperfect autophagocytosis. European Journal of Biochemistry. 2002;269(8):1996–2002. doi: 10.1046/j.1432-1033.2002.02869.x. PubMed DOI
Terman A., Dalen H., Brunk U. T. Ceroid/lipofuscin-loaded human fibroblasts show decreased survival time and diminished autophagocytosis during amino acid starvation. Experimental Gerontology. 1999;34(8):943–957. doi: 10.1016/S0531-5565(99)00070-4. PubMed DOI
Hohn A., Jung T., Grimm S., Catalgol B., Weber D., Grune T. Lipofuscin inhibits the proteasome by binding to surface motifs. Free Radical Biology & Medicine. 2011;50(5):585–591. doi: 10.1016/j.freeradbiomed.2010.12.011. PubMed DOI
Hohn A., Jung T., Grimm S., Grune T. Lipofuscin-bound iron is a major intracellular source of oxidants: role in senescent cells. Free Radical Biology & Medicine. 2010;48(8):1100–1108. doi: 10.1016/j.freeradbiomed.2010.01.030. PubMed DOI
Dunn J. A., Patrick J. S., Thorpe S. R., Baynes J. W. Oxidation of glycated proteins: age-dependent accumulation of N epsilon-(carboxymethyl) lysine in lens proteins. Biochemistry. 1989;28(24):9464–9468. doi: 10.1021/bi00450a033. PubMed DOI
Schleicher E. D., Wagner E., Nerlich A. G. Increased accumulation of the glycoxidation product N epsilon-(carboxymethyl)lysine in human tissues in diabetes and aging. The Journal of Clinical Investigation. 1997;99(3):457–468. doi: 10.1172/JCI119180. PubMed DOI PMC
Verzijl N., DeGroot J., Oldehinkel E., et al. Age-related accumulation of Maillard reaction products in human articular cartilage collagen. Biochemical Journal. 2000;350(2) Part 2:381–387. doi: 10.1042/bj3500381. PubMed DOI PMC
Stolzing A., Widmer R., Jung T., Voss P., Grune T. Degradation of glycated bovine serum albumin in microglial cells. Free Radical Biology & Medicine. 2006;40(6):1017–1027. doi: 10.1016/j.freeradbiomed.2005.10.061. PubMed DOI
Zeng J., Dunlop R. A., Rodgers K. J., Davies M. J. Evidence for inactivation of cysteine proteases by reactive carbonyls via glycation of active site thiols. Biochemical Journal. 2006;398(2):197–206. doi: 10.1042/BJ20060019. PubMed DOI PMC
Alvarez-Garcia O., Matsuzaki T., Olmer M., Masuda K., Lotz M. K. Age-related reduction in the expression of FOXO transcription factors and correlations with intervertebral disc degeneration. Journal of Orthopaedic Research. 2017;35(12):2682–2691. doi: 10.1002/jor.23583. PubMed DOI PMC
Lapierre L. R., Kumsta C., Sandri M., Ballabio A., Hansen M. Transcriptional and epigenetic regulation of autophagy in aging. Autophagy. 2015;11(6):867–880. doi: 10.1080/15548627.2015.1034410. PubMed DOI PMC
Yang J., Chen D., He Y., et al. MiR-34 modulates Caenorhabditis elegans lifespan via repressing the autophagy gene atg9. Age. 2013;35(1):11–22. doi: 10.1007/s11357-011-9324-3. PubMed DOI PMC
Cuervo A. M., Dice J. F. Age-related decline in chaperone-mediated autophagy. The Journal of Biological Chemistry. 2000;275(40):31505–31513. doi: 10.1074/jbc.M002102200. PubMed DOI
Kiffin R., Kaushik S., Zeng M., et al. Altered dynamics of the lysosomal receptor for chaperone-mediated autophagy with age. Journal of Cell Science. 2007;120(5):782–791. doi: 10.1242/jcs.001073. PubMed DOI
Zhang C., Cuervo A. M. Restoration of chaperone-mediated autophagy in aging liver improves cellular maintenance and hepatic function. Nature Medicine. 2008;14(9):959–965. doi: 10.1038/nm.1851. PubMed DOI PMC
Korolchuk V. I., Menzies F. M., Rubinsztein D. C. Mechanisms of cross-talk between the ubiquitin-proteasome and autophagy-lysosome systems. FEBS Letters. 2010;584(7):1393–1398. doi: 10.1016/j.febslet.2009.12.047. PubMed DOI
Kaushik S., Massey A. C., Mizushima N., Cuervo A. M. Constitutive activation of chaperone-mediated autophagy in cells with impaired macroautophagy. Molecular Biology of the Cell. 2008;19(5):2179–2192. doi: 10.1091/mbc.E07-11-1155. PubMed DOI PMC
Gavilán E., Pintado C., Gavilan M. P., et al. Age-related dysfunctions of the autophagy lysosomal pathway in hippocampal pyramidal neurons under proteasome stress. Neurobiology of Aging. 2015;36(5):1953–1963. doi: 10.1016/j.neurobiolaging.2015.02.025. PubMed DOI
Schneider J. L., Villarroya J., Diaz-Carretero A., et al. Loss of hepatic chaperone-mediated autophagy accelerates proteostasis failure in aging. Aging Cell. 2015;14(2):249–264. doi: 10.1111/acel.12310. PubMed DOI PMC
Friedman J. Why is the nervous system vulnerable to oxidative stress? In: Gadoth N., Göbel H., editors. Oxidative Stress and Free Radical Damage in Neurology. Oxidative Stress in Applied Basic Research and Clinical Practice. Humana Press; 2011. DOI
Markesbery W. R. Oxidative stress hypothesis in Alzheimer’s disease. Free Radical Biology & Medicine. 1997;23(1):134–147. doi: 10.1016/S0891-5849(96)00629-6. PubMed DOI
Butterfield D. A., Swomley A. M., Sultana R. Amyloid β-peptide (1–42)-induced oxidative stress in Alzheimer disease: importance in disease pathogenesis and progression. Antioxidants & Redox Signaling. 2013;19(8):823–835. doi: 10.1089/ars.2012.5027. PubMed DOI PMC
Lue L. F., Walker D. G., Brachova L., et al. Involvement of microglial receptor for advanced glycation endproducts (RAGE) in Alzheimer’s disease: identification of a cellular activation mechanism. Experimental Neurology. 2001;171(1):29–45. doi: 10.1006/exnr.2001.7732. PubMed DOI
Alavi Naini S. M., Soussi-Yanicostas N. Tau hyperphosphorylation and oxidative stress, a critical vicious circle in neurodegenerative tauopathies? Oxidative Medicine and Cellular Longevity. 2015;2015:17. doi: 10.1155/2015/151979.151979 PubMed DOI PMC
Dumont M., Stack C., Elipenahli C., et al. Behavioral deficit, oxidative stress, and mitochondrial dysfunction precede tau pathology in P301S transgenic mice. The FASEB Journal. 2011;25(11):4063–4072. doi: 10.1096/fj.11-186650. PubMed DOI PMC
Mancuso M., Orsucci D., Siciliano G., Murri L. Mitochondria, mitochondrial DNA and Alzheimer’s disease. What comes first? Current Alzheimer Research. 2008;5(5):457–468. doi: 10.2174/156720508785908946. PubMed DOI
Manczak M., Anekonda T. S., Henson E., Park B. S., Quinn J., Reddy P. H. Mitochondria are a direct site of Aβ accumulation in Alzheimer’s disease neurons: implications for free radical generation and oxidative damage in disease progression. Human Molecular Genetics. 2006;15(9):1437–1449. doi: 10.1093/hmg/ddl066. PubMed DOI
Aksenov M. Y., Tucker H. M., Nair P., et al. The expression of key oxidative stress-handling genes in different brain regions in Alzheimer’s disease. Journal of Molecular Neuroscience. 1998;11(2):151–164. doi: 10.1385/JMN:11:2:151. PubMed DOI
Lovell M. A., Ehmann W. D., Butler S. M., Markesbery W. R. Elevated thiobarbituric acid-reactive substances and antioxidant enzyme activity in the brain in Alzheimer’s disease. Neurology. 1995;45(8):1594–1601. doi: 10.1212/WNL.45.8.1594. PubMed DOI
Münch G., Mayer S., Michaelis J., et al. Influence of advanced glycation end-products and AGE-inhibitors on nucleation-dependent polymerization of β-amyloid peptide. Biochimica et Biophysica Acta (BBA) - Molecular Basis of Disease. 1997;1360(1):17–29. doi: 10.1016/S0925-4439(96)00062-2. PubMed DOI
Ko S. Y., Lin Y. P., Lin Y. S., Chang S. S. Advanced glycation end products enhance amyloid precursor protein expression by inducing reactive oxygen species. Free Radical Biology & Medicine. 2010;49(3):474–480. doi: 10.1016/j.freeradbiomed.2010.05.005. PubMed DOI
Misiti F., Clementi M. E., Giardina B. Oxidation of methionine 35 reduces toxicity of the amyloid beta-peptide (1–42) in neuroblastoma cells (IMR-32) via enzyme methionine sulfoxide reductase A expression and function. Neurochemistry International. 2010;56(4):597–602. doi: 10.1016/j.neuint.2010.01.002. PubMed DOI
Horiguchi T., Uryu K., Giasson B. I., et al. Nitration of tau protein is linked to neurodegeneration in tauopathies. The American Journal of Pathology. 2003;163(3):1021–1031. doi: 10.1016/S0002-9440(10)63462-1. PubMed DOI PMC
Lovell M. A., Xiong S., Xie C., Davies P., Markesbery W. R. Induction of hyperphosphorylated tau in primary rat cortical neuron cultures mediated by oxidative stress and glycogen synthase kinase-3. Journal of Alzheimer's Disease. 2004;6:659–671. PubMed
Nixon R. A., Wegiel J., Kumar A., et al. Extensive involvement of autophagy in Alzheimer disease: an immuno-electron microscopy study. Journal of Neuropathology & Experimental Neurology. 2005;64(2):113–122. doi: 10.1093/jnen/64.2.113. PubMed DOI
Kuusisto E., Kauppinen T., Alafuzoff I. Use of p62/SQSTM1 antibodies for neuropathological diagnosis. Neuropathology and Applied Neurobiology. 2008;34(2):169–180. doi: 10.1111/j.1365-2990.2007.00884.x. PubMed DOI
Piras A., Collin L., Gruninger F., Graff C., Ronnback A. Autophagic and lysosomal defects in human tauopathies: analysis of post-mortem brain from patients with familial Alzheimer disease, corticobasal degeneration and progressive supranuclear palsy. Acta Neuropathologica Communications. 2016;4(1):p. 22. doi: 10.1186/s40478-016-0292-9. PubMed DOI PMC
Lee J. H., Yu W. H., Kumar A., et al. Lysosomal proteolysis and autophagy require presenilin 1 and are disrupted by Alzheimer-related PS1 mutations. Cell. 2010;141(7):1146–1158. doi: 10.1016/j.cell.2010.05.008. PubMed DOI PMC
Zhang X., Garbett K., Veeraraghavalu K., et al. A role for presenilins in autophagy revisited: normal acidification of lysosomes in cells lacking PSEN1 and PSEN2. The Journal of Neuroscience. 2012;32(25):8633–8648. doi: 10.1523/JNEUROSCI.0556-12.2012. PubMed DOI PMC
Jun G., Naj A. C., Beecham G. W., et al. Meta-analysis confirms CR1, CLU, and PICALM as alzheimer disease risk loci and reveals interactions with APOE genotypes. Archives of Neurology. 2010;67(12):1473–1484. doi: 10.1001/archneurol.2010.201. PubMed DOI PMC
Ando K., Brion J. P., Stygelbout V., et al. Clathrin adaptor CALM/PICALM is associated with neurofibrillary tangles and is cleaved in Alzheimer’s brains. Acta Neuropathologica. 2013;125(6):861–878. doi: 10.1007/s00401-013-1111-z. PubMed DOI
Moreau K., Fleming A., Imarisio S., et al. PICALM modulates autophagy activity and tau accumulation. Nature Communications. 2014;5:p. 4998. doi: 10.1038/ncomms5998. PubMed DOI PMC
Butzlaff M., Hannan S. B., Karsten P., et al. Impaired retrograde transport by the dynein/dynactin complex contributes to tau-induced toxicity. Human Molecular Genetics. 2015;24(13):3623–3637. doi: 10.1093/hmg/ddv107. PubMed DOI
Majid T., Ali Y. O., Venkitaramani D. V., Jang M. K., Lu H. C., Pautler R. G. In vivo axonal transport deficits in a mouse model of fronto-temporal dementia. NeuroImage: Clinical. 2014;4:711–717. doi: 10.1016/j.nicl.2014.02.005. PubMed DOI PMC
Yu W. H., Cuervo A. M., Kumar A., et al. Macroautophagy—a novel β-amyloid peptide-generating pathway activated in Alzheimer’s disease. Journal of Cell Biology. 2005;171(1):87–98. doi: 10.1083/jcb.200505082. PubMed DOI PMC
Menzies F. M., Fleming A., Caricasole A., et al. Autophagy and neurodegeneration: pathogenic mechanisms and therapeutic opportunities. Neuron. 2017;93(5):1015–1034. doi: 10.1016/j.neuron.2017.01.022. PubMed DOI
Nilsson P., Loganathan K., Sekiguchi M., et al. Aβ secretion and plaque formation depend on autophagy. Cell Reports. 2013;5(1):61–69. doi: 10.1016/j.celrep.2013.08.042. PubMed DOI
Caballero B., Wang Y., Diaz A., et al. Interplay of pathogenic forms of human tau with different autophagic pathways. Aging Cell. 2017;17(1, article e12692) doi: 10.1111/acel.12692. PubMed DOI PMC
Pickford F., Masliah E., Britschgi M., et al. The autophagy-related protein beclin 1 shows reduced expression in early Alzheimer disease and regulates amyloid β accumulation in mice. The Journal of Clinical Investigation. 2008;118(6):2190–2199. doi: 10.1172/JCI33585. PubMed DOI PMC
Rojo A. I., Pajares M., Rada P., et al. NRF2 deficiency replicates transcriptomic changes in Alzheimer’s patients and worsens APP and TAU pathology. Redox Biology. 2017;13:444–451. doi: 10.1016/j.redox.2017.07.006. PubMed DOI PMC
Cataldo A. M., Barnett J. L., Berman S. A., et al. Gene expression and cellular content of cathepsin D in Alzheimer’s disease brain: evidence for early up-regulation of the endosomal-lysosomal system. Neuron. 1995;14(3):671–680. doi: 10.1016/0896-6273(95)90324-0. PubMed DOI