The ω-3 Polyunsaturated Fatty Acids and Oxidative Stress in Long-Term Parenteral Nutrition Dependent Adult Patients: Functional Lipidomics Approach
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
15 28745A
Ministerstvo Zdravotnictví Ceské Republiky
MH CZ-DRO ("Institute for Clinical and Experimental Medicine IKEM, IN 00023001)
Ministerstvo Zdravotnictví Ceské Republiky
AIIHHP: CZ.02.1.01/0.0/0.0/16_025/0007428, OP RDE
Ministerstvo Školství, Mládeže a Tělovýchovy
PubMed
32781598
PubMed Central
PMC7468769
DOI
10.3390/nu12082351
PII: nu12082351
Knihovny.cz E-zdroje
- Klíčová slova
- fish oil, home parenteral nutrition, hydroxy-fatty acids, intestinal failure, lipidomics, olive oil, oxidative stress, plasmalogens,
- MeSH
- antioxidancia metabolismus MeSH
- dospělí MeSH
- erytrocyty metabolismus MeSH
- kyseliny mastné omega-3 farmakologie MeSH
- lidé středního věku MeSH
- lidé MeSH
- lipidomika MeSH
- lipidy krev MeSH
- nemoci střev krev terapie MeSH
- olivový olej farmakologie MeSH
- oxidační stres účinky léků MeSH
- parenterální výživa škodlivé účinky metody MeSH
- průřezové studie MeSH
- rybí oleje farmakologie MeSH
- senioři nad 80 let MeSH
- senioři MeSH
- studie případů a kontrol MeSH
- tukové emulze intravenózní farmakologie MeSH
- Check Tag
- dospělí MeSH
- lidé středního věku MeSH
- lidé MeSH
- mužské pohlaví MeSH
- senioři nad 80 let MeSH
- senioři MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- antioxidancia MeSH
- kyseliny mastné omega-3 MeSH
- lipidy MeSH
- olivový olej MeSH
- rybí oleje MeSH
- tukové emulze intravenózní MeSH
Omega-3 polyunsaturated fatty acids (ω-3PUFAs) are introduced into parenteral nutrition (PN) as hepatoprotective but may be susceptible to the lipid peroxidation while olive oil (OO) is declared more peroxidation resistant. We aimed to estimate how the lipid composition of PN mixture affects plasma and erythrocyte lipidome and the propensity of oxidative stress. A cross-sectional comparative study was performed in a cohort of adult patients who were long-term parenterally administered ω-3 PUFAs without (FO/-, n = 9) or with (FO/OO, n = 13) olive oil and healthy age- and sex-matched controls, (n = 30). Lipoperoxidation assessed as plasma and erythrocyte malondialdehyde content was increased in both FO/- and FO/OO groups but protein oxidative stress (protein carbonyls in plasma) and low redox status (GSH/GSSG in erythrocytes) was detected only in the FO/- subcohort. The lipidome of all subjects receiving ω-3 PUFAs was enriched with lipid species containing ω-3 PUFAs (FO/-˃FO/OO). Common characteristic of all PN-dependent patients was high content of fatty acyl-esters of hydroxy-fatty acids (FAHFAs) in plasma while acylcarnitines and ceramides were enriched in erythrocytes. Plasma and erythrocyte concentrations of plasmanyls and plasmalogens (endogenous antioxidants) were decreased in both patient groups with a significantly more pronounced effect in FO/-. We confirmed the protective effect of OO in PN mixtures containing ω-3 PUFAs.
Academy of Sciences of the Czech Republic Institute of Physiology 142 20 Prague Czech Republic
Department of Physiology Faculty of Science Charles University Prague 128 00 Prague Czech Republic
Diabetology Center Institute for Clinical and Experimental Medicine 140 21 Prague Czech Republic
Institute of Hematology and Blood Transfusion 128 20 Prague Czech Republic
University of Chemistry and Technology 166 28 Prague Czech Republic
Zobrazit více v PubMed
Mizock B.A. Immunonutrition and critical illness: An update. Nutrition. 2010;26:701–707. doi: 10.1016/j.nut.2009.11.010. PubMed DOI
Ren T., Cong L., Wang Y., Tang Y., Tian B., Lin X., Zhang Y., Tang X. Lipid emulsions in parenteral nutrition: Current applications and future developments. Expert Opin. Drug Deliv. 2013;10:1533–1549. doi: 10.1517/17425247.2013.824874. PubMed DOI
Roche L.D. Oxidative stress: The dark side of soybean-oil-based emulsions used in parenteral nutrition. Oxid. Antioxid. Med. Sci. 2012;1:11–14. doi: 10.5455/oams.100412.rv.002. DOI
Im D.S. Omega-3 fatty acids in anti-inflammation (pro-resolution) and GPCRs. Prog. Lipid Res. 2012;51:232–237. doi: 10.1016/j.plipres.2012.02.003. PubMed DOI
Poudyal H., Panchal S.K., Diwan V., Brown L. Omega-3 fatty acids and metabolic syndrome: Effects and emerging mechanisms of action. Prog. Lipid Res. 2011;50:372–387. doi: 10.1016/j.plipres.2011.06.003. PubMed DOI
Klek S. Omega-3 Fatty Acids in Modern Parenteral Nutrition: A Review of the Current Evidence. J. Clin. Med. 2016;5:34. doi: 10.3390/jcm5030034. PubMed DOI PMC
Maehre H.K., Jensen I.J., Elvevoll E.O., Eilertsen K.E. Omega-3 Fatty Acids and Cardiovascular Diseases: Effects, Mechanisms and Dietary Relevance. Int. J. Mol. Sci. 2015;16:22636–22661. doi: 10.3390/ijms160922636. PubMed DOI PMC
Cai W., Calder P.C., Cury-Boaventura M.F., De Waele E., Jakubowski J., Zaloga G. Biological and Clinical Aspects of an Olive Oil-Based Lipid Emulsion-A Review. Nutrients. 2018;10:776. doi: 10.3390/nu10060776. PubMed DOI PMC
Baena-Gomez M.A., Aguilar M.J., Mesa M.D., Navero J.L., Gil-Campos M. Changes in Antioxidant Defense System Using Different Lipid Emulsions in Parenteral Nutrition in Children after Hematopoietic Stem Cell Transplantation. Nutrients. 2015;7:7242–7255. doi: 10.3390/nu7095335. PubMed DOI PMC
Linseisen J., Hoffmann J., Lienhard S., Jauch K.W., Wolfram G. Antioxidant status of surgical patients receiving TPN with an omega-3-fatty acid-containing lipid emulsion supplemented with alpha-tocopherol. Clin. Nutr. 2000;19:177–184. doi: 10.1054/clnu.1999.0096. PubMed DOI
Mostad I.L., Bjerve K.S., Basu S., Sutton P., Frayn K.N., Grill V. Addition of n-3 fatty acids to a 4-hour lipid infusion does not affect insulin sensitivity, insulin secretion, or markers of oxidative stress in subjects with type 2 diabetes mellitus. Metabolism. 2009;58:1753–1761. doi: 10.1016/j.metabol.2009.06.003. PubMed DOI
Unal S., Demirel N., Erol S., Isik D.U., Kulali F., Iyigun F., Bas A.Y. Effects of two different lipid emulsions on morbidities and oxidant stress statuses in preterm infants: An observational study. J. Matern. Fetal Neonatal Med. 2018;31:850–856. doi: 10.1080/14767058.2017.1300644. PubMed DOI
Versleijen M.W., Roelofs H.M., Rombouts C., Hermans P.W., Noakes P.S., Calder P.C., Wanten G.J. Short-term infusion of a fish oil-based lipid emulsion modulates fatty acid status, but not immune function or (anti)oxidant balance: A randomized cross-over study. Eur. J. Clin. Investig. 2012;42:290–302. doi: 10.1111/j.1365-2362.2011.02582.x. PubMed DOI
Wu W.H., Lu S.C., Wang T.F., Jou H.J., Wang T.A. Effects of docosahexaenoic acid supplementation on blood lipids, estrogen metabolism, and in vivo oxidative stress in postmenopausal vegetarian women. Eur. J. Clin. Nutr. 2006;60:386–392. doi: 10.1038/sj.ejcn.1602328. PubMed DOI
Deshpande G., Simmer K., Deshmukh M., Mori T.A., Croft K.D., Kristensen J. Fish Oil (SMOFlipid) and olive oil lipid (Clinoleic) in very preterm neonates. J. Pediatr. Gastroenterol. Nutr. 2014;58:177–182. doi: 10.1097/MPG.0000000000000174. PubMed DOI
Skouroliakou M., Konstantinou D., Koutri K., Kakavelaki C., Stathopoulou M., Antoniadi M., Xemelidis N., Kona V., Markantonis S. A double-blind, randomized clinical trial of the effect of omega-3 fatty acids on the oxidative stress of preterm neonates fed through parenteral nutrition. Eur. J. Clin. Nutr. 2010;64:940–947. doi: 10.1038/ejcn.2010.98. PubMed DOI
Demirer S., Sapmaz A., Karaca A.S., Kepenekci I., Aydintug S., Balci D., Sonyurek P., Kose K. Effects of postoperative parenteral nutrition with different lipid emulsions in patients undergoing major abdominal surgery. Ann. Surg. Treat. Res. 2016;91:309–315. doi: 10.4174/astr.2016.91.6.309. PubMed DOI PMC
Miloudi K., Comte B., Rouleau T., Montoudis A., Levy E., Lavoie J.C. The mode of administration of total parenteral nutrition and nature of lipid content influence the generation of peroxides and aldehydes. Clin. Nutr. 2012;31:526–534. doi: 10.1016/j.clnu.2011.12.012. PubMed DOI
Arisue A., Shimojima N., Tomiya M., Shimizu T., Harada D., Nakayama M., Tomita H., Shinoda M., Tanabe M., Maruyama I., et al. Effect of an omega-3 lipid emulsion in reducing oxidative stress in a rat model of intestinal ischemia-reperfusion injury. Pediatr. Surg. Int. 2012;28:913–918. doi: 10.1007/s00383-012-3144-0. PubMed DOI PMC
Lavoie J.C., Mohamed I., Nuyt A.M., Elremaly W., Rouleau T. Impact of SMOFLipid on Pulmonary Alveolar Development in Newborn Guinea Pigs. JPEN J. Parenter. Enteral. Nutr. 2018;42:1314–1321. doi: 10.1002/jpen.1153. PubMed DOI
Zhang T., Wang N., Yan W., Lu L., Tao Y., Li F., Wang Y., Cai W. Effect of a fish oil-based lipid emulsion on intestinal failure-associated liver disease in children. Eur. J. Clin. Nutr. 2018;72:1364–1372. doi: 10.1038/s41430-018-0096-z. PubMed DOI
Pironi L., Guidetti M., Verrastro O., Iacona C., Agostini F., Pazzeschi C., Sasdelli A.S., Melchiorre M., Ferreri C. Functional lipidomics in patients on home parenteral nutrition: Effect of lipid emulsions. World J. Gastroenterol. 2017;23:4604–4614. doi: 10.3748/wjg.v23.i25.4604. PubMed DOI PMC
Klek S., Chambrier C., Singer P., Rubin M., Bowling T., Staun M., Joly F., Rasmussen H., Strauss B.J., Wanten G., et al. Four-week parenteral nutrition using a third generation lipid emulsion (SMOFlipid)—A double-blind, randomised, multicentre study in adults. Clin. Nutr. 2013;32:224–231. doi: 10.1016/j.clnu.2012.06.011. PubMed DOI
Rolim A.E., Henrique-Araujo R., Ferraz E.G., de Araujo Alves Dultra F.K., Fernandez L.G. Lipidomics in the study of lipid metabolism: Current perspectives in the omic sciences. Gene. 2015;554:131–139. doi: 10.1016/j.gene.2014.10.039. PubMed DOI
Pironi L., Arends J., Baxter J., Bozzetti F., Pelaez R.B., Cuerda C., Forbes A., Gabe S., Gillanders L., Holst M., et al. ESPEN endorsed recommendations. Definition and classification of intestinal failure in adults. Clin. Nutr. 2015;34:171–180. doi: 10.1016/j.clnu.2014.08.017. PubMed DOI
Iuliano L., Piccheri C., Coppola I., Pratico D., Micheletta F., Violi F. Fluorescence quenching of dipyridamole associated to peroxyl radical scavenging: A versatile probe to measure the chain breaking antioxidant activity of biomolecules. Biochim. Biophys. Acta. 2000;1474:177–182. doi: 10.1016/S0304-4165(00)00017-9. PubMed DOI
Chen Z., Wang S., Yu B., Li A. A comparison study between early enteral nutrition and parenteral nutrition in severe burn patients. Burns. 2007;33:708–712. doi: 10.1016/j.burns.2006.10.380. PubMed DOI
Hagen T.M. Oxidative stress, redox imbalance, and the aging process. Antioxid. Redox Signal. 2003;5:503–506. doi: 10.1089/152308603770310149. PubMed DOI
Maciejczyk M., Zalewska A., Ladny J.R. Salivary Antioxidant Barrier, Redox Status, and Oxidative Damage to Proteins and Lipids in Healthy Children, Adults, and the Elderly. Oxid. Med. Cell Longev. 2019;2019 doi: 10.1155/2019/4393460. PubMed DOI PMC
Pajares M., Cuadrado A., Engedal N., Jirsova Z., Cahova M. The Role of Free Radicals in Autophagy Regulation: Implications for Ageing. Oxid. Med. Cell Longev. 2018;2018 doi: 10.1155/2018/2450748. PubMed DOI PMC
Bruna E., Petit E., Beljeanleymarie M., Huynh S., Nouvelot A. Specific Susceptibility of Docosahexaenoic Acid and Eicosapentaenoic Acid to Peroxidation in Aqueous-Solution. Lipids. 1989;24:970–975. doi: 10.1007/BF02544543. DOI
Fuhrman B., Volkova N., Aviram M. Postprandial. serum triacylglycerols and oxidative stress in mice after consumption of fish oil, soy oil or olive oil: Possible role for paraoxonase-1 triacylglycerol lipase-like activity. Nutrition. 2006;22:922–930. doi: 10.1016/j.nut.2006.04.012. PubMed DOI
Lauriti G., Zani A., Aufieri R., Cananzi M., Chiesa P.L., Eaton S., Pierro A. Incidence, prevention, and treatment of parenteral nutrition-associated cholestasis and intestinal failure-associated liver disease in infants and children: A systematic review. JPEN J. Parenter. Enteral. Nutr. 2014;38:70–85. doi: 10.1177/0148607113496280. PubMed DOI
Nanhuck R.M., Doublet A., Yaqoob P. Effects of lipid emulsions on lipid body formation and eicosanoid production by human peripheral blood mononuclear and polymorphonuclear cells. Clin. Nutr. 2009;28:556–564. doi: 10.1016/j.clnu.2009.05.008. PubMed DOI
Watkins S.M., Carter L.C., German J.B. Docosahexaenoic acid accumulates in cardiolipin and enhances HT-29 cell oxidant production. J. Lipid Res. 1998;39:1583–1588. PubMed
Lessig J., Fuchs B. Plasmalogens in biological systems: Their role in oxidative processes in biological membranes, their contribution to pathological processes and aging and plasmalogen analysis. Curr. Med. Chem. 2009;16:2021–2041. doi: 10.2174/092986709788682164. PubMed DOI
Braverman N.E., Moser A.B. Functions of plasmalogen lipids in health and disease. Biochim. Biophys. Acta. 2012;1822:1442–1452. doi: 10.1016/j.bbadis.2012.05.008. PubMed DOI
Sindelar P.J., Guan Z., Dallner G., Ernster L. The protective role of plasmalogens in iron-induced lipid peroxidation. Free Radic. Biol. Med. 1999;26:318–324. doi: 10.1016/S0891-5849(98)00221-4. PubMed DOI
Hu C., Zhou J., Yang S., Li H., Wang C., Fang X., Fan Y., Zhang J., Han X., Wen C. Oxidative stress leads to reduction of plasmalogen serving as a novel biomarker for systemic lupus erythematosus. Free Radic. Biol. Med. 2016;101:475–481. doi: 10.1016/j.freeradbiomed.2016.11.006. PubMed DOI
Maeba R., Nishimukai M., Sakasegawa S., Sugimori D., Hara H. Plasma/Serum Plasmalogens: Methods of Analysis and Clinical Significance. Adv. Clin. Chem. 2015;70:31–94. doi: 10.1016/bs.acc.2015.03.005. PubMed DOI
Yore M.M., Syed I., Moraes-Vieira P.M., Zhang T., Herman M.A., Homan E.A., Patel R.T., Lee J., Chen S., Peroni O.D., et al. Discovery of a class of endogenous mammalian lipids with anti-diabetic and anti-inflammatory effects. Cell. 2014;159:318–332. doi: 10.1016/j.cell.2014.09.035. PubMed DOI PMC
Nelson A.T., Kolar M.J., Chu Q., Syed I., Kahn B.B., Saghatelian A., Siegel D. Stereochemistry of Endogenous Palmitic Acid Ester of 9-Hydroxystearic Acid and Relevance of Absolute Configuration to Regulation. J. Am. Chem. Soc. 2017;139:4943–4947. doi: 10.1021/jacs.7b01269. PubMed DOI PMC