The ω-3 Polyunsaturated Fatty Acids and Oxidative Stress in Long-Term Parenteral Nutrition Dependent Adult Patients: Functional Lipidomics Approach

. 2020 Aug 06 ; 12 (8) : . [epub] 20200806

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid32781598

Grantová podpora
15 28745A Ministerstvo Zdravotnictví Ceské Republiky
MH CZ-DRO ("Institute for Clinical and Experimental Medicine IKEM, IN 00023001) Ministerstvo Zdravotnictví Ceské Republiky
AIIHHP: CZ.02.1.01/0.0/0.0/16_025/0007428, OP RDE Ministerstvo Školství, Mládeže a Tělovýchovy

Omega-3 polyunsaturated fatty acids (ω-3PUFAs) are introduced into parenteral nutrition (PN) as hepatoprotective but may be susceptible to the lipid peroxidation while olive oil (OO) is declared more peroxidation resistant. We aimed to estimate how the lipid composition of PN mixture affects plasma and erythrocyte lipidome and the propensity of oxidative stress. A cross-sectional comparative study was performed in a cohort of adult patients who were long-term parenterally administered ω-3 PUFAs without (FO/-, n = 9) or with (FO/OO, n = 13) olive oil and healthy age- and sex-matched controls, (n = 30). Lipoperoxidation assessed as plasma and erythrocyte malondialdehyde content was increased in both FO/- and FO/OO groups but protein oxidative stress (protein carbonyls in plasma) and low redox status (GSH/GSSG in erythrocytes) was detected only in the FO/- subcohort. The lipidome of all subjects receiving ω-3 PUFAs was enriched with lipid species containing ω-3 PUFAs (FO/-˃FO/OO). Common characteristic of all PN-dependent patients was high content of fatty acyl-esters of hydroxy-fatty acids (FAHFAs) in plasma while acylcarnitines and ceramides were enriched in erythrocytes. Plasma and erythrocyte concentrations of plasmanyls and plasmalogens (endogenous antioxidants) were decreased in both patient groups with a significantly more pronounced effect in FO/-. We confirmed the protective effect of OO in PN mixtures containing ω-3 PUFAs.

Zobrazit více v PubMed

Mizock B.A. Immunonutrition and critical illness: An update. Nutrition. 2010;26:701–707. doi: 10.1016/j.nut.2009.11.010. PubMed DOI

Ren T., Cong L., Wang Y., Tang Y., Tian B., Lin X., Zhang Y., Tang X. Lipid emulsions in parenteral nutrition: Current applications and future developments. Expert Opin. Drug Deliv. 2013;10:1533–1549. doi: 10.1517/17425247.2013.824874. PubMed DOI

Roche L.D. Oxidative stress: The dark side of soybean-oil-based emulsions used in parenteral nutrition. Oxid. Antioxid. Med. Sci. 2012;1:11–14. doi: 10.5455/oams.100412.rv.002. DOI

Im D.S. Omega-3 fatty acids in anti-inflammation (pro-resolution) and GPCRs. Prog. Lipid Res. 2012;51:232–237. doi: 10.1016/j.plipres.2012.02.003. PubMed DOI

Poudyal H., Panchal S.K., Diwan V., Brown L. Omega-3 fatty acids and metabolic syndrome: Effects and emerging mechanisms of action. Prog. Lipid Res. 2011;50:372–387. doi: 10.1016/j.plipres.2011.06.003. PubMed DOI

Klek S. Omega-3 Fatty Acids in Modern Parenteral Nutrition: A Review of the Current Evidence. J. Clin. Med. 2016;5:34. doi: 10.3390/jcm5030034. PubMed DOI PMC

Maehre H.K., Jensen I.J., Elvevoll E.O., Eilertsen K.E. Omega-3 Fatty Acids and Cardiovascular Diseases: Effects, Mechanisms and Dietary Relevance. Int. J. Mol. Sci. 2015;16:22636–22661. doi: 10.3390/ijms160922636. PubMed DOI PMC

Cai W., Calder P.C., Cury-Boaventura M.F., De Waele E., Jakubowski J., Zaloga G. Biological and Clinical Aspects of an Olive Oil-Based Lipid Emulsion-A Review. Nutrients. 2018;10:776. doi: 10.3390/nu10060776. PubMed DOI PMC

Baena-Gomez M.A., Aguilar M.J., Mesa M.D., Navero J.L., Gil-Campos M. Changes in Antioxidant Defense System Using Different Lipid Emulsions in Parenteral Nutrition in Children after Hematopoietic Stem Cell Transplantation. Nutrients. 2015;7:7242–7255. doi: 10.3390/nu7095335. PubMed DOI PMC

Linseisen J., Hoffmann J., Lienhard S., Jauch K.W., Wolfram G. Antioxidant status of surgical patients receiving TPN with an omega-3-fatty acid-containing lipid emulsion supplemented with alpha-tocopherol. Clin. Nutr. 2000;19:177–184. doi: 10.1054/clnu.1999.0096. PubMed DOI

Mostad I.L., Bjerve K.S., Basu S., Sutton P., Frayn K.N., Grill V. Addition of n-3 fatty acids to a 4-hour lipid infusion does not affect insulin sensitivity, insulin secretion, or markers of oxidative stress in subjects with type 2 diabetes mellitus. Metabolism. 2009;58:1753–1761. doi: 10.1016/j.metabol.2009.06.003. PubMed DOI

Unal S., Demirel N., Erol S., Isik D.U., Kulali F., Iyigun F., Bas A.Y. Effects of two different lipid emulsions on morbidities and oxidant stress statuses in preterm infants: An observational study. J. Matern. Fetal Neonatal Med. 2018;31:850–856. doi: 10.1080/14767058.2017.1300644. PubMed DOI

Versleijen M.W., Roelofs H.M., Rombouts C., Hermans P.W., Noakes P.S., Calder P.C., Wanten G.J. Short-term infusion of a fish oil-based lipid emulsion modulates fatty acid status, but not immune function or (anti)oxidant balance: A randomized cross-over study. Eur. J. Clin. Investig. 2012;42:290–302. doi: 10.1111/j.1365-2362.2011.02582.x. PubMed DOI

Wu W.H., Lu S.C., Wang T.F., Jou H.J., Wang T.A. Effects of docosahexaenoic acid supplementation on blood lipids, estrogen metabolism, and in vivo oxidative stress in postmenopausal vegetarian women. Eur. J. Clin. Nutr. 2006;60:386–392. doi: 10.1038/sj.ejcn.1602328. PubMed DOI

Deshpande G., Simmer K., Deshmukh M., Mori T.A., Croft K.D., Kristensen J. Fish Oil (SMOFlipid) and olive oil lipid (Clinoleic) in very preterm neonates. J. Pediatr. Gastroenterol. Nutr. 2014;58:177–182. doi: 10.1097/MPG.0000000000000174. PubMed DOI

Skouroliakou M., Konstantinou D., Koutri K., Kakavelaki C., Stathopoulou M., Antoniadi M., Xemelidis N., Kona V., Markantonis S. A double-blind, randomized clinical trial of the effect of omega-3 fatty acids on the oxidative stress of preterm neonates fed through parenteral nutrition. Eur. J. Clin. Nutr. 2010;64:940–947. doi: 10.1038/ejcn.2010.98. PubMed DOI

Demirer S., Sapmaz A., Karaca A.S., Kepenekci I., Aydintug S., Balci D., Sonyurek P., Kose K. Effects of postoperative parenteral nutrition with different lipid emulsions in patients undergoing major abdominal surgery. Ann. Surg. Treat. Res. 2016;91:309–315. doi: 10.4174/astr.2016.91.6.309. PubMed DOI PMC

Miloudi K., Comte B., Rouleau T., Montoudis A., Levy E., Lavoie J.C. The mode of administration of total parenteral nutrition and nature of lipid content influence the generation of peroxides and aldehydes. Clin. Nutr. 2012;31:526–534. doi: 10.1016/j.clnu.2011.12.012. PubMed DOI

Arisue A., Shimojima N., Tomiya M., Shimizu T., Harada D., Nakayama M., Tomita H., Shinoda M., Tanabe M., Maruyama I., et al. Effect of an omega-3 lipid emulsion in reducing oxidative stress in a rat model of intestinal ischemia-reperfusion injury. Pediatr. Surg. Int. 2012;28:913–918. doi: 10.1007/s00383-012-3144-0. PubMed DOI PMC

Lavoie J.C., Mohamed I., Nuyt A.M., Elremaly W., Rouleau T. Impact of SMOFLipid on Pulmonary Alveolar Development in Newborn Guinea Pigs. JPEN J. Parenter. Enteral. Nutr. 2018;42:1314–1321. doi: 10.1002/jpen.1153. PubMed DOI

Zhang T., Wang N., Yan W., Lu L., Tao Y., Li F., Wang Y., Cai W. Effect of a fish oil-based lipid emulsion on intestinal failure-associated liver disease in children. Eur. J. Clin. Nutr. 2018;72:1364–1372. doi: 10.1038/s41430-018-0096-z. PubMed DOI

Pironi L., Guidetti M., Verrastro O., Iacona C., Agostini F., Pazzeschi C., Sasdelli A.S., Melchiorre M., Ferreri C. Functional lipidomics in patients on home parenteral nutrition: Effect of lipid emulsions. World J. Gastroenterol. 2017;23:4604–4614. doi: 10.3748/wjg.v23.i25.4604. PubMed DOI PMC

Klek S., Chambrier C., Singer P., Rubin M., Bowling T., Staun M., Joly F., Rasmussen H., Strauss B.J., Wanten G., et al. Four-week parenteral nutrition using a third generation lipid emulsion (SMOFlipid)—A double-blind, randomised, multicentre study in adults. Clin. Nutr. 2013;32:224–231. doi: 10.1016/j.clnu.2012.06.011. PubMed DOI

Rolim A.E., Henrique-Araujo R., Ferraz E.G., de Araujo Alves Dultra F.K., Fernandez L.G. Lipidomics in the study of lipid metabolism: Current perspectives in the omic sciences. Gene. 2015;554:131–139. doi: 10.1016/j.gene.2014.10.039. PubMed DOI

Pironi L., Arends J., Baxter J., Bozzetti F., Pelaez R.B., Cuerda C., Forbes A., Gabe S., Gillanders L., Holst M., et al. ESPEN endorsed recommendations. Definition and classification of intestinal failure in adults. Clin. Nutr. 2015;34:171–180. doi: 10.1016/j.clnu.2014.08.017. PubMed DOI

Iuliano L., Piccheri C., Coppola I., Pratico D., Micheletta F., Violi F. Fluorescence quenching of dipyridamole associated to peroxyl radical scavenging: A versatile probe to measure the chain breaking antioxidant activity of biomolecules. Biochim. Biophys. Acta. 2000;1474:177–182. doi: 10.1016/S0304-4165(00)00017-9. PubMed DOI

Chen Z., Wang S., Yu B., Li A. A comparison study between early enteral nutrition and parenteral nutrition in severe burn patients. Burns. 2007;33:708–712. doi: 10.1016/j.burns.2006.10.380. PubMed DOI

Hagen T.M. Oxidative stress, redox imbalance, and the aging process. Antioxid. Redox Signal. 2003;5:503–506. doi: 10.1089/152308603770310149. PubMed DOI

Maciejczyk M., Zalewska A., Ladny J.R. Salivary Antioxidant Barrier, Redox Status, and Oxidative Damage to Proteins and Lipids in Healthy Children, Adults, and the Elderly. Oxid. Med. Cell Longev. 2019;2019 doi: 10.1155/2019/4393460. PubMed DOI PMC

Pajares M., Cuadrado A., Engedal N., Jirsova Z., Cahova M. The Role of Free Radicals in Autophagy Regulation: Implications for Ageing. Oxid. Med. Cell Longev. 2018;2018 doi: 10.1155/2018/2450748. PubMed DOI PMC

Bruna E., Petit E., Beljeanleymarie M., Huynh S., Nouvelot A. Specific Susceptibility of Docosahexaenoic Acid and Eicosapentaenoic Acid to Peroxidation in Aqueous-Solution. Lipids. 1989;24:970–975. doi: 10.1007/BF02544543. DOI

Fuhrman B., Volkova N., Aviram M. Postprandial. serum triacylglycerols and oxidative stress in mice after consumption of fish oil, soy oil or olive oil: Possible role for paraoxonase-1 triacylglycerol lipase-like activity. Nutrition. 2006;22:922–930. doi: 10.1016/j.nut.2006.04.012. PubMed DOI

Lauriti G., Zani A., Aufieri R., Cananzi M., Chiesa P.L., Eaton S., Pierro A. Incidence, prevention, and treatment of parenteral nutrition-associated cholestasis and intestinal failure-associated liver disease in infants and children: A systematic review. JPEN J. Parenter. Enteral. Nutr. 2014;38:70–85. doi: 10.1177/0148607113496280. PubMed DOI

Nanhuck R.M., Doublet A., Yaqoob P. Effects of lipid emulsions on lipid body formation and eicosanoid production by human peripheral blood mononuclear and polymorphonuclear cells. Clin. Nutr. 2009;28:556–564. doi: 10.1016/j.clnu.2009.05.008. PubMed DOI

Watkins S.M., Carter L.C., German J.B. Docosahexaenoic acid accumulates in cardiolipin and enhances HT-29 cell oxidant production. J. Lipid Res. 1998;39:1583–1588. PubMed

Lessig J., Fuchs B. Plasmalogens in biological systems: Their role in oxidative processes in biological membranes, their contribution to pathological processes and aging and plasmalogen analysis. Curr. Med. Chem. 2009;16:2021–2041. doi: 10.2174/092986709788682164. PubMed DOI

Braverman N.E., Moser A.B. Functions of plasmalogen lipids in health and disease. Biochim. Biophys. Acta. 2012;1822:1442–1452. doi: 10.1016/j.bbadis.2012.05.008. PubMed DOI

Sindelar P.J., Guan Z., Dallner G., Ernster L. The protective role of plasmalogens in iron-induced lipid peroxidation. Free Radic. Biol. Med. 1999;26:318–324. doi: 10.1016/S0891-5849(98)00221-4. PubMed DOI

Hu C., Zhou J., Yang S., Li H., Wang C., Fang X., Fan Y., Zhang J., Han X., Wen C. Oxidative stress leads to reduction of plasmalogen serving as a novel biomarker for systemic lupus erythematosus. Free Radic. Biol. Med. 2016;101:475–481. doi: 10.1016/j.freeradbiomed.2016.11.006. PubMed DOI

Maeba R., Nishimukai M., Sakasegawa S., Sugimori D., Hara H. Plasma/Serum Plasmalogens: Methods of Analysis and Clinical Significance. Adv. Clin. Chem. 2015;70:31–94. doi: 10.1016/bs.acc.2015.03.005. PubMed DOI

Yore M.M., Syed I., Moraes-Vieira P.M., Zhang T., Herman M.A., Homan E.A., Patel R.T., Lee J., Chen S., Peroni O.D., et al. Discovery of a class of endogenous mammalian lipids with anti-diabetic and anti-inflammatory effects. Cell. 2014;159:318–332. doi: 10.1016/j.cell.2014.09.035. PubMed DOI PMC

Nelson A.T., Kolar M.J., Chu Q., Syed I., Kahn B.B., Saghatelian A., Siegel D. Stereochemistry of Endogenous Palmitic Acid Ester of 9-Hydroxystearic Acid and Relevance of Absolute Configuration to Regulation. J. Am. Chem. Soc. 2017;139:4943–4947. doi: 10.1021/jacs.7b01269. PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...