High Dose Fish Oil Added to Various Lipid Emulsions Normalizes Superoxide Dismutase 1 Activity in Home Parenteral Nutrition Patients

. 2024 Feb 08 ; 16 (4) : . [epub] 20240208

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu randomizované kontrolované studie, časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid38398809

Grantová podpora
MH CZ-DRO-VFN64165 Czech Ministry of Health

(1) Objectives: Intestinal failure in home parenteral nutrition patients (HPNPs) results in oxidative stress and liver damage. This study investigated how a high dose of fish oil (FO) added to various lipid emulsions influences antioxidant status and liver function markers in HPNPs. (2) Methods: Twelve HPNPs receiving Smoflipid for at least 3 months were given FO (Omegaven) for a further 4 weeks. Then, the patients were randomized to subsequently receive Lipoplus and ClinOleic for 6 weeks or vice versa plus 4 weeks of Omegaven after each cycle in a crossover design. Twelve age- and sex-matched healthy controls (HCs) were included. (3) Results: Superoxide dismutase (SOD1) activity and oxidized-low-density lipoprotein concentration were higher in all baseline HPN regimens compared to HCs. The Omegaven lowered SOD1 compared to baseline regimens and thus normalized it toward HCs. Lower paraoxonase 1 activity and fibroblast growth factor 19 (FGF19) concentration and, on the converse, higher alkaline phosphatase activity and cholesten concentration were observed in all baseline regimens compared to HCs. A close correlation was observed between FGF19 and SOD1 in baseline regimens. (4) Conclusions: An escalated dose of FO normalized SOD1 activity in HPNPs toward that of HCs. Bile acid metabolism was altered in HPNPs without signs of significant cholestasis and not affected by Omegaven.

Zobrazit více v PubMed

Cuerda C., Pironi L., Arends J., Bozzetti F., Gillanders L., Jeppesen P.B., Joly F., Kelly D., Lal S., Staun M., et al. ESPEN practical guideline: Clinical nutrition in chronic intestinal failure. Clin. Nutr. 2021;40:5196–5220. doi: 10.1016/j.clnu.2021.07.002. PubMed DOI

Novak F., Vecka M., Meisnerova E., Sevela S., Vavrova L., Rychlikova J., Dolezalova L., Myslivcova D., Zak A., Vitek L., et al. Fish oil supplementation with various lipid emulsions suppresses in vitro cytokine release in home parenteral nutrition patients: A crossover study. Nutr. Res. 2019;72:70–79. doi: 10.1016/j.nutres.2019.10.004. PubMed DOI

Kosek V., Heczkova M., Novak F., Meisnerova E., Novakova O., Zelenka J., Bechynska K., Vrzacova N., Suttnar J., Hlavackova A., et al. The omega-3 Polyunsaturated Fatty Acids and Oxidative Stress in Long-Term Parenteral Nutrition Dependent Adult Patients: Functional Lipidomics Approach. Nutrients. 2020;12:2351. doi: 10.3390/nu12082351. PubMed DOI PMC

Chen S., Xiao Y., Liu Y., Tian X., Wang W., Jiang L., Wu W., Zhang T., Cai W., Wang Y. Fish oil-based lipid emulsion alleviates parenteral nutrition-associated liver diseases and intestinal injury in piglets. J. Parenter. Enteral. Nutr. 2022;46:709–720. doi: 10.1002/jpen.2229. PubMed DOI

Burrin D.G., Ng K., Stoll B., De Pipaón M.S. Impact of new-generation lipid emulsions on cellular mechanisms of parenteral nutrition-associated liver disease. Adv. Nutr. 2014;5:82–91. doi: 10.3945/an.113.004796. PubMed DOI PMC

Vogt M., Bauer M.K., Ferrari D., Schulze-Osthoff K. Oxidative stress and hypoxia/reoxygenation trigger CD95 (APO-1/Fas) ligand expression in microglial cells. FEBS Lett. 1998;429:67–72. doi: 10.1016/S0014-5793(98)00562-6. PubMed DOI

Guthrie G., Burrin D. Impact of Parenteral Lipid Emulsion Components on Cholestatic Liver Disease in Neonates. Nutrients. 2021;13:508. doi: 10.3390/nu13020508. PubMed DOI PMC

Pironi L., Sasdelli A.S. Intestinal Failure-Associated Liver Disease. Clin. Liver Dis. 2019;23:279–291. doi: 10.1016/j.cld.2018.12.009. PubMed DOI

Bond A., Huijbers A., Pironi L., Schneider S.M., Wanten G., Lal S. Review article: Diagnosis and management of intestinal failure-associated liver disease in adults. Aliment. Pharmacol. Ther. 2019;50:640–653. doi: 10.1111/apt.15432. PubMed DOI

Secor J.D., Yu L., Tsikis S., Fligor S., Puder M., Gura K.M. Current strategies for managing intestinal failure-associated liver disease. Expert. Opin. Drug Saf. 2021;20:307–320. doi: 10.1080/14740338.2021.1867099. PubMed DOI

Mutanen A., Lohi J., Heikkila P., Jalanko H., Pakarinen M.P. Loss of ileum decreases serum fibroblast growth factor 19 in relation to liver inflammation and fibrosis in pediatric onset intestinal failure. J. Hepatol. 2015;62:1391–1397. doi: 10.1016/j.jhep.2015.01.004. PubMed DOI

van Erpecum K.J., Schaap F.G. Intestinal failure to produce FGF19: A culprit in intestinal failure-associated liver disease? J. Hepatol. 2015;62:1231–1233. doi: 10.1016/j.jhep.2015.03.012. PubMed DOI

Stofan M., Guo G.L. Bile Acids and FXR: Novel Targets for Liver Diseases. Front. Med. 2020;7:544. doi: 10.3389/fmed.2020.00544. PubMed DOI PMC

Lucchinetti E., Lou P.H., Wawrzyniak P., Wawrzyniak M., Scharl M., Holtzhauer G.A., Kramer S.D., Hersberger M., Rogler G., Zaugg M. Novel Strategies to Prevent Total Parenteral Nutrition-Induced Gut and Liver Inflammation, and Adverse Metabolic Outcomes. Mol. Nutr. Food Res. 2021;65:e1901270. doi: 10.1002/mnfr.201901270. PubMed DOI

Li Y., Qin C., Dong L., Zhang X., Wu Z., Liu L., Yang J., Liu L. Whole grain benefit: Synergistic effect of oat phenolic compounds and β-glucan on hyperlipidemia via gut microbiota in high-fat-diet mice. Food Funct. 2022;13:12686–12696. doi: 10.1039/D2FO01746F. PubMed DOI

Madnawat H., Welu A.L., Gilbert E.J., Taylor D.B., Jain S., Manithody C., Blomenkamp K., Jain A.K. Mechanisms of Parenteral Nutrition-Associated Liver and Gut Injury. Nutr. Clin. Pract. 2020;35:63–71. doi: 10.1002/ncp.10461. PubMed DOI PMC

Wawrzyniak P., Noureddine N., Wawrzyniak M., Lucchinetti E., Krämer S.D., Rogler G., Zaugg M., Hersberger M. Nutritional Lipids and Mucosal Inflammation. Mol. Nutr. Food Res. 2021;65:e1901269. doi: 10.1002/mnfr.201901269. PubMed DOI

Rogulska J., Osowska S., Kunecki M., Sobocki J., Ładyżyński P., Giebułtowicz J. Antioxidant balance in plasma of patients on home parenteral nutrition: A pilot study comparing three different lipid emulsions. Clin. Nutr. 2021;40:3950–3958. doi: 10.1016/j.clnu.2021.04.006. PubMed DOI

Zaloga G.P. Narrative Review of n-3 Polyunsaturated Fatty Acid Supplementation upon Immune Functions, Resolution Molecules and Lipid Peroxidation. Nutrients. 2021;13:662. doi: 10.3390/nu13020662. PubMed DOI PMC

Lenicek M., Vecka M., Zizalova K., Vitek L. Comparison of simple extraction procedures in liquid chromatography-mass spectrometry based determination of serum 7α-hydroxy-4-cholesten-3-one, a surrogate marker of bile acid synthesis. J. Chromatogr. B Analyt Technol. Biomed. Life Sci. 2016;1033–1034:317–320. doi: 10.1016/j.jchromb.2016.08.046. PubMed DOI

Vavrova L., Rychlikova J., Mrackova M., Novakova O., Zak A., Novak F. Increased inflammatory markers with altered antioxidant status persist after clinical recovery from severe sepsis: A correlation with low HDL cholesterol and albumin. Clin. Exp. Med. 2016;16:557–569. doi: 10.1007/s10238-015-0390-1. PubMed DOI

Kodydková J., Vávrová L., Zeman M., Jirák R., Macásek J., Stanková B., Tvrzická E., Zák A. Antioxidative enzymes and increased oxidative stress in depressive women. Clin. Biochem. 2009;42:1368–1374. doi: 10.1016/j.clinbiochem.2009.06.006. PubMed DOI

Folch J., Lees M., Sloane Stanley G.H. A simple method for the isolation and purification of total lipides from animal tissues. J. Biol. Chem. 1957;226:497–509. doi: 10.1016/S0021-9258(18)64849-5. PubMed DOI

Vecka M., Tvrzická E., Stanková B., Zák A. Effect of column and software on gas chromatographic determination of fatty acids. J. Chromatogr. B Analyt Technol. Biomed. Life Sci. 2002;770:91–99. doi: 10.1016/S1570-0232(01)00630-4. PubMed DOI

Klek S., Chambrier C., Singer P., Rubin M., Bowling T., Staun M., Joly F., Rasmussen H., Strauss B.J., Wanten G., et al. Four-week parenteral nutrition using a third generation lipid emulsion (SMOFlipid)—A double-blind, randomised, multicentre study in adults. Clin. Nutr. 2013;32:224–231. doi: 10.1016/j.clnu.2012.06.011. PubMed DOI

Harris W.S., Sands S.A., Windsor S.L., Ali H.A., Stevens T.L., Magalski A., Porter C.B., Borkon A.M. Omega-3 fatty acids in cardiac biopsies from heart transplantation patients: Correlation with erythrocytes and response to supplementation. Circulation. 2004;110:1645–1649. doi: 10.1161/01.CIR.0000142292.10048.B2. PubMed DOI

Heshmati J., Morvaridzadeh M., Maroufizadeh S., Akbari A., Yavari M., Amirinejad A., Maleki-Hajiagha A., Sepidarkish M. Omega-3 fatty acids supplementation and oxidative stress parameters: A systematic review and meta-analysis of clinical trials. Pharmacol. Res. 2019;149:104462. doi: 10.1016/j.phrs.2019.104462. PubMed DOI

Liu L., Jin R., Hao J., Zeng J., Yin D., Yi Y., Zhu M., Mandal A., Hua Y., Ng C.K., et al. Consumption of the Fish Oil High-Fat Diet Uncouples Obesity and Mammary Tumor Growth through Induction of Reactive Oxygen Species in Protumor Macrophages. Cancer Res. 2020;80:2564–2574. doi: 10.1158/0008-5472.CAN-19-3184. PubMed DOI PMC

Miloudi K., Comte B., Rouleau T., Montoudis A., Levy E., Lavoie J.C. The mode of administration of total parenteral nutrition and nature of lipid content influence the generation of peroxides and aldehydes. Clin. Nutr. 2012;31:526–534. doi: 10.1016/j.clnu.2011.12.012. PubMed DOI

Shimizu M., Sato R. Endocrine Fibroblast Growth Factors in Relation to Stress Signaling. Cells. 2022;11:505. doi: 10.3390/cells11030505. PubMed DOI PMC

Vakili L., Navab K.D., Shabihkhani M., Pourtabatabaei N., Vazirian S., Barseghian Z., Seyedali S., Hough G. Systemic inflammation, intestine, and paraoxonase-1. Adv. Exp. Med. Biol. 2014;824:83–88. doi: 10.1007/978-3-319-07320-0_8. PubMed DOI

Boehm D., Krzystek-Korpacka M., Neubauer K., Matusiewicz M., Berdowska I., Zielinski B., Paradowski L., Gamian A. Paraoxonase-1 status in Crohn’s disease and ulcerative colitis. Inflamm. Bowel Dis. 2009;15:93–99. doi: 10.1002/ibd.20582. PubMed DOI

Ferretti G., Bacchetti T. Effect of dietary lipids on paraoxonase-1 activity and gene expression. Nutr. Metab. Cardiovasc. Dis. 2012;22:88–94. doi: 10.1016/j.numecd.2011.08.011. PubMed DOI

Fuhrman B., Volkova N., Aviram M. Postprandial serum triacylglycerols and oxidative stress in mice after consumption of fish oil, soy oil or olive oil: Possible role for paraoxonase-1 triacylglycerol lipase-like activity. Nutrition. 2006;22:922–930. doi: 10.1016/j.nut.2006.04.012. PubMed DOI

Freese R., Alfthan G., Jauhiainen M., Basu S., Erlund I., Salminen I., Aro A., Mutanen M. High intakes of vegetables, berries, and apples combined with a high intake of linoleic or oleic acid only slightly affect markers of lipid peroxidation and lipoprotein metabolism in healthy subjects. Am. J. Clin. Nutr. 2002;76:950–960. doi: 10.1093/ajcn/76.5.950. PubMed DOI

Boutte H.J., Jr., Chen J., Wylie T.N., Wylie K.M., Xie Y., Geisman M., Prabu A., Gazit V., Tarr P.I., Levin M.S., et al. Fecal microbiome and bile acid metabolome in adult short bowel syndrome. Am. J. Physiol. Gastrointest. Liver Physiol. 2022;322:G154–G168. doi: 10.1152/ajpgi.00091.2021. PubMed DOI PMC

Poupon R. Liver alkaline phosphatase: A missing link between choleresis and biliary inflammation. Hepatology. 2015;61:2080–2090. doi: 10.1002/hep.27715. PubMed DOI

Pike A.F., Kramer N.I., Blaauboer B.J., Seinen W., Brands R. A novel hypothesis for an alkaline phosphatase ‘rescue’ mechanism in the hepatic acute phase immune response. Biochim. Biophys. Acta. 2013;1832:2044–2056. doi: 10.1016/j.bbadis.2013.07.016. PubMed DOI

Tuin A., Huizinga-Van der Vlag A., van Loenen-Weemaes A.M., Meijer D.K., Poelstra K. On the role and fate of LPS-dephosphorylating activity in the rat liver. Am. J. Physiol. Gastrointest. Liver Physiol. 2006;290:G377–G385. doi: 10.1152/ajpgi.00147.2005. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...