High Dose Fish Oil Added to Various Lipid Emulsions Normalizes Superoxide Dismutase 1 Activity in Home Parenteral Nutrition Patients
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu randomizované kontrolované studie, časopisecké články
Grantová podpora
MH CZ-DRO-VFN64165
Czech Ministry of Health
PubMed
38398809
PubMed Central
PMC10891535
DOI
10.3390/nu16040485
PII: nu16040485
Knihovny.cz E-zdroje
- Klíčová slova
- bile acids, chronic intestinal failure, fibroblast growth factor 19, liver function tests, oxidative stress, short bowel syndrome,
- MeSH
- cholestáza * MeSH
- lidé MeSH
- parenterální výživa doma * metody MeSH
- rybí oleje MeSH
- sójový olej MeSH
- superoxid dismutáza 1 MeSH
- tukové emulze intravenózní MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- randomizované kontrolované studie MeSH
- Názvy látek
- rybí oleje MeSH
- sójový olej MeSH
- superoxid dismutáza 1 MeSH
- tukové emulze intravenózní MeSH
(1) Objectives: Intestinal failure in home parenteral nutrition patients (HPNPs) results in oxidative stress and liver damage. This study investigated how a high dose of fish oil (FO) added to various lipid emulsions influences antioxidant status and liver function markers in HPNPs. (2) Methods: Twelve HPNPs receiving Smoflipid for at least 3 months were given FO (Omegaven) for a further 4 weeks. Then, the patients were randomized to subsequently receive Lipoplus and ClinOleic for 6 weeks or vice versa plus 4 weeks of Omegaven after each cycle in a crossover design. Twelve age- and sex-matched healthy controls (HCs) were included. (3) Results: Superoxide dismutase (SOD1) activity and oxidized-low-density lipoprotein concentration were higher in all baseline HPN regimens compared to HCs. The Omegaven lowered SOD1 compared to baseline regimens and thus normalized it toward HCs. Lower paraoxonase 1 activity and fibroblast growth factor 19 (FGF19) concentration and, on the converse, higher alkaline phosphatase activity and cholesten concentration were observed in all baseline regimens compared to HCs. A close correlation was observed between FGF19 and SOD1 in baseline regimens. (4) Conclusions: An escalated dose of FO normalized SOD1 activity in HPNPs toward that of HCs. Bile acid metabolism was altered in HPNPs without signs of significant cholestasis and not affected by Omegaven.
Department of Physiology Faculty of Science Charles University 128 00 Prague Czech Republic
Institute of Physiology Academy of Sciences of the Czech Republic 142 20 Prague Czech Republic
Zobrazit více v PubMed
Cuerda C., Pironi L., Arends J., Bozzetti F., Gillanders L., Jeppesen P.B., Joly F., Kelly D., Lal S., Staun M., et al. ESPEN practical guideline: Clinical nutrition in chronic intestinal failure. Clin. Nutr. 2021;40:5196–5220. doi: 10.1016/j.clnu.2021.07.002. PubMed DOI
Novak F., Vecka M., Meisnerova E., Sevela S., Vavrova L., Rychlikova J., Dolezalova L., Myslivcova D., Zak A., Vitek L., et al. Fish oil supplementation with various lipid emulsions suppresses in vitro cytokine release in home parenteral nutrition patients: A crossover study. Nutr. Res. 2019;72:70–79. doi: 10.1016/j.nutres.2019.10.004. PubMed DOI
Kosek V., Heczkova M., Novak F., Meisnerova E., Novakova O., Zelenka J., Bechynska K., Vrzacova N., Suttnar J., Hlavackova A., et al. The omega-3 Polyunsaturated Fatty Acids and Oxidative Stress in Long-Term Parenteral Nutrition Dependent Adult Patients: Functional Lipidomics Approach. Nutrients. 2020;12:2351. doi: 10.3390/nu12082351. PubMed DOI PMC
Chen S., Xiao Y., Liu Y., Tian X., Wang W., Jiang L., Wu W., Zhang T., Cai W., Wang Y. Fish oil-based lipid emulsion alleviates parenteral nutrition-associated liver diseases and intestinal injury in piglets. J. Parenter. Enteral. Nutr. 2022;46:709–720. doi: 10.1002/jpen.2229. PubMed DOI
Burrin D.G., Ng K., Stoll B., De Pipaón M.S. Impact of new-generation lipid emulsions on cellular mechanisms of parenteral nutrition-associated liver disease. Adv. Nutr. 2014;5:82–91. doi: 10.3945/an.113.004796. PubMed DOI PMC
Vogt M., Bauer M.K., Ferrari D., Schulze-Osthoff K. Oxidative stress and hypoxia/reoxygenation trigger CD95 (APO-1/Fas) ligand expression in microglial cells. FEBS Lett. 1998;429:67–72. doi: 10.1016/S0014-5793(98)00562-6. PubMed DOI
Guthrie G., Burrin D. Impact of Parenteral Lipid Emulsion Components on Cholestatic Liver Disease in Neonates. Nutrients. 2021;13:508. doi: 10.3390/nu13020508. PubMed DOI PMC
Pironi L., Sasdelli A.S. Intestinal Failure-Associated Liver Disease. Clin. Liver Dis. 2019;23:279–291. doi: 10.1016/j.cld.2018.12.009. PubMed DOI
Bond A., Huijbers A., Pironi L., Schneider S.M., Wanten G., Lal S. Review article: Diagnosis and management of intestinal failure-associated liver disease in adults. Aliment. Pharmacol. Ther. 2019;50:640–653. doi: 10.1111/apt.15432. PubMed DOI
Secor J.D., Yu L., Tsikis S., Fligor S., Puder M., Gura K.M. Current strategies for managing intestinal failure-associated liver disease. Expert. Opin. Drug Saf. 2021;20:307–320. doi: 10.1080/14740338.2021.1867099. PubMed DOI
Mutanen A., Lohi J., Heikkila P., Jalanko H., Pakarinen M.P. Loss of ileum decreases serum fibroblast growth factor 19 in relation to liver inflammation and fibrosis in pediatric onset intestinal failure. J. Hepatol. 2015;62:1391–1397. doi: 10.1016/j.jhep.2015.01.004. PubMed DOI
van Erpecum K.J., Schaap F.G. Intestinal failure to produce FGF19: A culprit in intestinal failure-associated liver disease? J. Hepatol. 2015;62:1231–1233. doi: 10.1016/j.jhep.2015.03.012. PubMed DOI
Stofan M., Guo G.L. Bile Acids and FXR: Novel Targets for Liver Diseases. Front. Med. 2020;7:544. doi: 10.3389/fmed.2020.00544. PubMed DOI PMC
Lucchinetti E., Lou P.H., Wawrzyniak P., Wawrzyniak M., Scharl M., Holtzhauer G.A., Kramer S.D., Hersberger M., Rogler G., Zaugg M. Novel Strategies to Prevent Total Parenteral Nutrition-Induced Gut and Liver Inflammation, and Adverse Metabolic Outcomes. Mol. Nutr. Food Res. 2021;65:e1901270. doi: 10.1002/mnfr.201901270. PubMed DOI
Li Y., Qin C., Dong L., Zhang X., Wu Z., Liu L., Yang J., Liu L. Whole grain benefit: Synergistic effect of oat phenolic compounds and β-glucan on hyperlipidemia via gut microbiota in high-fat-diet mice. Food Funct. 2022;13:12686–12696. doi: 10.1039/D2FO01746F. PubMed DOI
Madnawat H., Welu A.L., Gilbert E.J., Taylor D.B., Jain S., Manithody C., Blomenkamp K., Jain A.K. Mechanisms of Parenteral Nutrition-Associated Liver and Gut Injury. Nutr. Clin. Pract. 2020;35:63–71. doi: 10.1002/ncp.10461. PubMed DOI PMC
Wawrzyniak P., Noureddine N., Wawrzyniak M., Lucchinetti E., Krämer S.D., Rogler G., Zaugg M., Hersberger M. Nutritional Lipids and Mucosal Inflammation. Mol. Nutr. Food Res. 2021;65:e1901269. doi: 10.1002/mnfr.201901269. PubMed DOI
Rogulska J., Osowska S., Kunecki M., Sobocki J., Ładyżyński P., Giebułtowicz J. Antioxidant balance in plasma of patients on home parenteral nutrition: A pilot study comparing three different lipid emulsions. Clin. Nutr. 2021;40:3950–3958. doi: 10.1016/j.clnu.2021.04.006. PubMed DOI
Zaloga G.P. Narrative Review of n-3 Polyunsaturated Fatty Acid Supplementation upon Immune Functions, Resolution Molecules and Lipid Peroxidation. Nutrients. 2021;13:662. doi: 10.3390/nu13020662. PubMed DOI PMC
Lenicek M., Vecka M., Zizalova K., Vitek L. Comparison of simple extraction procedures in liquid chromatography-mass spectrometry based determination of serum 7α-hydroxy-4-cholesten-3-one, a surrogate marker of bile acid synthesis. J. Chromatogr. B Analyt Technol. Biomed. Life Sci. 2016;1033–1034:317–320. doi: 10.1016/j.jchromb.2016.08.046. PubMed DOI
Vavrova L., Rychlikova J., Mrackova M., Novakova O., Zak A., Novak F. Increased inflammatory markers with altered antioxidant status persist after clinical recovery from severe sepsis: A correlation with low HDL cholesterol and albumin. Clin. Exp. Med. 2016;16:557–569. doi: 10.1007/s10238-015-0390-1. PubMed DOI
Kodydková J., Vávrová L., Zeman M., Jirák R., Macásek J., Stanková B., Tvrzická E., Zák A. Antioxidative enzymes and increased oxidative stress in depressive women. Clin. Biochem. 2009;42:1368–1374. doi: 10.1016/j.clinbiochem.2009.06.006. PubMed DOI
Folch J., Lees M., Sloane Stanley G.H. A simple method for the isolation and purification of total lipides from animal tissues. J. Biol. Chem. 1957;226:497–509. doi: 10.1016/S0021-9258(18)64849-5. PubMed DOI
Vecka M., Tvrzická E., Stanková B., Zák A. Effect of column and software on gas chromatographic determination of fatty acids. J. Chromatogr. B Analyt Technol. Biomed. Life Sci. 2002;770:91–99. doi: 10.1016/S1570-0232(01)00630-4. PubMed DOI
Klek S., Chambrier C., Singer P., Rubin M., Bowling T., Staun M., Joly F., Rasmussen H., Strauss B.J., Wanten G., et al. Four-week parenteral nutrition using a third generation lipid emulsion (SMOFlipid)—A double-blind, randomised, multicentre study in adults. Clin. Nutr. 2013;32:224–231. doi: 10.1016/j.clnu.2012.06.011. PubMed DOI
Harris W.S., Sands S.A., Windsor S.L., Ali H.A., Stevens T.L., Magalski A., Porter C.B., Borkon A.M. Omega-3 fatty acids in cardiac biopsies from heart transplantation patients: Correlation with erythrocytes and response to supplementation. Circulation. 2004;110:1645–1649. doi: 10.1161/01.CIR.0000142292.10048.B2. PubMed DOI
Heshmati J., Morvaridzadeh M., Maroufizadeh S., Akbari A., Yavari M., Amirinejad A., Maleki-Hajiagha A., Sepidarkish M. Omega-3 fatty acids supplementation and oxidative stress parameters: A systematic review and meta-analysis of clinical trials. Pharmacol. Res. 2019;149:104462. doi: 10.1016/j.phrs.2019.104462. PubMed DOI
Liu L., Jin R., Hao J., Zeng J., Yin D., Yi Y., Zhu M., Mandal A., Hua Y., Ng C.K., et al. Consumption of the Fish Oil High-Fat Diet Uncouples Obesity and Mammary Tumor Growth through Induction of Reactive Oxygen Species in Protumor Macrophages. Cancer Res. 2020;80:2564–2574. doi: 10.1158/0008-5472.CAN-19-3184. PubMed DOI PMC
Miloudi K., Comte B., Rouleau T., Montoudis A., Levy E., Lavoie J.C. The mode of administration of total parenteral nutrition and nature of lipid content influence the generation of peroxides and aldehydes. Clin. Nutr. 2012;31:526–534. doi: 10.1016/j.clnu.2011.12.012. PubMed DOI
Shimizu M., Sato R. Endocrine Fibroblast Growth Factors in Relation to Stress Signaling. Cells. 2022;11:505. doi: 10.3390/cells11030505. PubMed DOI PMC
Vakili L., Navab K.D., Shabihkhani M., Pourtabatabaei N., Vazirian S., Barseghian Z., Seyedali S., Hough G. Systemic inflammation, intestine, and paraoxonase-1. Adv. Exp. Med. Biol. 2014;824:83–88. doi: 10.1007/978-3-319-07320-0_8. PubMed DOI
Boehm D., Krzystek-Korpacka M., Neubauer K., Matusiewicz M., Berdowska I., Zielinski B., Paradowski L., Gamian A. Paraoxonase-1 status in Crohn’s disease and ulcerative colitis. Inflamm. Bowel Dis. 2009;15:93–99. doi: 10.1002/ibd.20582. PubMed DOI
Ferretti G., Bacchetti T. Effect of dietary lipids on paraoxonase-1 activity and gene expression. Nutr. Metab. Cardiovasc. Dis. 2012;22:88–94. doi: 10.1016/j.numecd.2011.08.011. PubMed DOI
Fuhrman B., Volkova N., Aviram M. Postprandial serum triacylglycerols and oxidative stress in mice after consumption of fish oil, soy oil or olive oil: Possible role for paraoxonase-1 triacylglycerol lipase-like activity. Nutrition. 2006;22:922–930. doi: 10.1016/j.nut.2006.04.012. PubMed DOI
Freese R., Alfthan G., Jauhiainen M., Basu S., Erlund I., Salminen I., Aro A., Mutanen M. High intakes of vegetables, berries, and apples combined with a high intake of linoleic or oleic acid only slightly affect markers of lipid peroxidation and lipoprotein metabolism in healthy subjects. Am. J. Clin. Nutr. 2002;76:950–960. doi: 10.1093/ajcn/76.5.950. PubMed DOI
Boutte H.J., Jr., Chen J., Wylie T.N., Wylie K.M., Xie Y., Geisman M., Prabu A., Gazit V., Tarr P.I., Levin M.S., et al. Fecal microbiome and bile acid metabolome in adult short bowel syndrome. Am. J. Physiol. Gastrointest. Liver Physiol. 2022;322:G154–G168. doi: 10.1152/ajpgi.00091.2021. PubMed DOI PMC
Poupon R. Liver alkaline phosphatase: A missing link between choleresis and biliary inflammation. Hepatology. 2015;61:2080–2090. doi: 10.1002/hep.27715. PubMed DOI
Pike A.F., Kramer N.I., Blaauboer B.J., Seinen W., Brands R. A novel hypothesis for an alkaline phosphatase ‘rescue’ mechanism in the hepatic acute phase immune response. Biochim. Biophys. Acta. 2013;1832:2044–2056. doi: 10.1016/j.bbadis.2013.07.016. PubMed DOI
Tuin A., Huizinga-Van der Vlag A., van Loenen-Weemaes A.M., Meijer D.K., Poelstra K. On the role and fate of LPS-dephosphorylating activity in the rat liver. Am. J. Physiol. Gastrointest. Liver Physiol. 2006;290:G377–G385. doi: 10.1152/ajpgi.00147.2005. PubMed DOI