• This record comes from PubMed

Success of cuckoo catfish brood parasitism reflects coevolutionary history and individual experience of their cichlid hosts

. 2018 May ; 4 (5) : eaar4380. [epub] 20180502

Language English Country United States Media electronic-ecollection

Document type Journal Article, Research Support, Non-U.S. Gov't

Obligate brood parasites manipulate other species into raising their offspring. Avian and insect brood parasitic systems demonstrate how interacting species engage in reciprocal coevolutionary arms races through behavioral and morphological adaptations and counteradaptations. Mouthbrooding cichlid fishes are renowned for their remarkable evolutionary radiations and complex behaviors. In Lake Tanganyika, mouthbrooding cichlids are exploited by the only obligate nonavian vertebrate brood parasite, the cuckoo catfish Synodontis multipunctatus. We show that coevolutionary history and individual learning both have a major impact on the success of cuckoo catfish parasitism between coevolved sympatric and evolutionarily naïve allopatric cichlid species. The rate of cuckoo catfish parasitism in coevolved Tanganyikan hosts was 3 to 11 times lower than in evolutionarily naïve cichlids. Moreover, using experimental infections, we demonstrate that parasite egg rejection in sympatric hosts was much higher, leading to seven times greater parasite survival in evolutionarily naïve than sympatric hosts. However, a high rejection frequency of parasitic catfish eggs by coevolved sympatric hosts came at a cost of increased rejection of their own eggs. A significant cost of catfish parasitism was universal, except for coevolved sympatric cichlid species with previous experience of catfish parasitism, demonstrating that learning and individual experience both contribute to a successful host response.

See more in PubMed

C. N. Spottiswoode, R. M. Kilner, N. B. Davies, Blood parasitism, in The Evolution of Parental Care, N. J. Royle, P. T. Smiseth, M. Kölliker, Eds. (Oxford Univ. Press, 2012), pp. 226–243.

Davies N. B., Bourke A. F. G., de L Brooke M., Cuckoos and parasitic ants: Interspecific brood parasitism as an evolutionary arms race. Trends Ecol. Evol. 4, 274–278 (1989). PubMed

S. I. Rothstein, S. K. Robinson, Parasitic Birds and Their Hosts: Studies in Coevolution (Oxford Univ. Press, 1998).

N. B. Davies, Cuckoos, Cowbirds, and Other Cheats (Poyser, 2000).

Brandt M., Foitzik S., Fischer-Blass B., Heinze J., The coevolutionary dynamics of obligate social parasite systems—Between prudence and antagonism. Biol. Rev. 80, 251–267 (2005). PubMed

Kilner R. M., Langmore N. E., Cuckoos versus hosts in insects and birds: Adaptations, counter-adaptations and outcomes. Biol. Rev. 86, 836–852 (2011). PubMed

Medina I., Langmore N. E., The evolution of acceptance and tolerance in hosts of avian brood parasites. Biol. Rev. 91, 569–577 (2016). PubMed

Soler M., Møller A. P., Duration of sympatry and coevolution between the great spotted cuckoo and its magpie host. Nature 343, 748 (1990).

Langmore N. E., Hunt S., Kilner R. M., Escalation of a coevolutionary arms race through host rejection of brood parasitic young. Nature 422, 157 (2003). PubMed

Davies N. B., Welbergen J. A., Social transmission of a host defense against cuckoo parasitism. Science 324, 1318–1320 (2009). PubMed

Canestrari D., Bolopo D., Turlings T. C., Röder G., Marcos J. M., Baglione V., From parasitism to mutualism: Unexpected interactions between a cuckoo and its host. Science 343, 1350–1352 (2014). PubMed

Feeney W. E., Medina I., Somveille M., Heinsohn R., Hall M. L., Mulder R. A., Stein J. A., Kilner R. M., Langmore N. E., Brood parasitism and the evolution of cooperative breeding in birds. Science 342, 1506–1508 (2013). PubMed

Lyon B. E., Eadie J. M., Conspecific brood parasitism in birds: A life-history perspective. Annu. Rev. Ecol. Evol. Syst. 39, 343–363 (2008).

Sato T., A brood parasitic catfish of mouthbrooding cichlid fishes in Lake Tanganyika. Nature 323, 58–59 (1986). PubMed

R. J. Wootton, C. Smith, Reproductive Biology of Teleost Fishes (Wiley-Blackwell, 2015).

Wickler W., ‘Egg-dummies’ as natural releasers in mouth-breeding cichlids. Nature 194, 1092–1093 (1962).

Wagner C. E., Harmon L. J., Seehausen O., Ecological opportunity and sexual selection together predict adaptive radiation. Nature 487, 366 (2012). PubMed

A. Konings, Back to Nature: Guide to Tanganyika Cichlids (Cichlid Press, ed. 3, 2005).

Wisenden B. D., Alloparental care in fishes. Rev. Fish Biol. Fish. 9, 45–70 (1999).

Payne R. B., Woods J. L., Payne L. L., Parental care in estrildid finches: Experimental tests of a model of Vidua brood parasitism. Anim. Behav. 62, 473–483 (2001).

Grim T., Samaš P., Hauber M. E., The repeatability of avian egg ejection behaviors across different temporal scales, breeding stages, female ages and experiences. Behav. Ecol. Sociobiol. 68, 749–759 (2014).

Strausberger B. M., Rothstein S. I., Parasitic cowbirds may defeat host defense by causing rejecters to misimprint on cowbird eggs. Behav. Ecol. 20, 691–699 (2009).

Hosoi S. A., Rothstein S. I., Nest desertion and cowbird parasitism: Evidence for evolved responses and evolutionary lag. Anim. Behav. 59, 823–840 (2000). PubMed

Reichard M., Polačik M., Tarkan A. S., Spence R., Gaygusuz Ö., Ercan E., Ondračková M., Smith C., The bitterling–mussel coevolutionary relationship in areas of recent and ancient sympatry. Evolution 64, 3047–3056 (2010). PubMed

Procházka P., Konvičková-Patzenhauerová H., Požgayová M., Trnka A., Jelínek V., Honza M., Host genotype and age have no effect on rejection of parasitic eggs. Naturwissenschaften 101, 417–426 (2014). PubMed

Hauber M. E., Yeh P. J., Roberts J. O. L., Patterns and coevolutionary consequences of repeated brood parasitism. Proc. R. Soc. Lond. B Biol. Sci. 271 (suppl. 5), S317–S320 (2004). PubMed PMC

Molina-Morales M., Martínez J. G., Martín-Gálvez D., Dawson D. A., Burke T., Avilés J. M., Cuckoo hosts shift from accepting to rejecting parasitic eggs across their lifetime. Evolution 68, 3020–3029 (2014). PubMed

Langmore N. E., Kilner R. M., Why do Horsfield’s bronze-cuckoo Chalcites basalis eggs mimic those of their hosts? Behav. Ecol. Sociobiol. 63, 1127–1131 (2009).

Shizuka D., Lyon B. E., Coots use hatch order to learn to recognize and reject conspecific brood parasitic chicks. Nature 463, 223–226 (2010). PubMed

Lotem A., Nakamura H., Zahavi A., Constraints on egg discrimination and cuckoo-host co-evolution. Anim. Behav. 49, 1185–1209 (1995).

Thorogood R., Davies N. B., Cuckoos combat socially transmitted defenses of reed warbler hosts with a plumage polymorphism. Science 337, 578–580 (2012). PubMed

M. H. A. Keenleyside, Parental care, in Cichlid Fishes: Behavior, Ecology and Evolution, M. H. A. Keenleyside, Ed. (Chapman and Hall, 1991), pp. 191–208.

R. Coleman, Cichlid egg size summary (1991); http://cichlidresearch.com/eggtabt.html.

M. S. Cohen, “Host-parasite interactions of the African cuckoo catfish (Synodontis multipunctatus),” thesis, University of Colorado at Boulder (2015).

Šulc M., Procházka P., Capek M., Honza M., Common cuckoo females are not choosy when removing an egg during parasitism. Behav. Ecol. 27, 1642–1649 (2016).

Kilner R. M., The evolution of virulence in brood parasites. Ornithol. Sci. 4, 55–64 (2005).

Spottiswoode C. N., Koorevaar J. A., A stab in the dark: Chick killing by brood parasitic honeyguides. Biol. Lett. 8, 241–244 (2012). PubMed PMC

Day J. J., Wilkinson M., On the origin of the Synodontis catfish species flock from Lake Tanganyika. Biol. Lett. 2, 548–552 (2006). PubMed PMC

Salzburger W., Van Bocxlaer B., Cohen A. S., Ecology and evolution of the African Great Lakes and their faunas. Annu. Rev. Ecol. Evol. Syst. 45, 519–545 (2014).

Seehausen O., African cichlid fish: A model system in adaptive radiation research. Proc. R. Soc. Lond. B Biol. Sci. 273, 1987–1998 (2006). PubMed PMC

Koblmüller S., Sturmbauer C., Verheyen E., Meyer A., Salzburger W., Mitochondrial phylogeny and phylogeography of East African squeaker catfishes (Siluriformes: Synodontis). BMC Evol. Biol. 6, 49 (2006). PubMed PMC

Koblmüller S., Egger B., Sturmbauer C., Sefc K. M., Rapid radiation, ancient incomplete lineage sorting and ancient hybridization in the endemic Lake Tanganyika cichlid tribe Tropheini. Mol. Phylogenet. Evol. 55, 318–334 (2010). PubMed

See more in PubMed

figshare
10.6084/m9.figshare.5789349

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...