Host nest defence does not act as selective agent against plumage polymorphism in brood parasites
Jazyk angličtina Země Velká Británie, Anglie Médium print-electronic
Typ dokumentu časopisecké články
Grantová podpora
Grantová Agentura České Republiky
PubMed
39533954
PubMed Central
PMC11558238
DOI
10.1098/rspb.2024.1135
Knihovny.cz E-zdroje
- Klíčová slova
- Batesian mimicry, brood parasitism, cuckoo hawk-like mimicry, frontline nest defence, host aggression, negative frequency-dependent selection,
- MeSH
- agrese MeSH
- biologická evoluce MeSH
- hnízdění * MeSH
- mimikry * MeSH
- peří * MeSH
- pigmentace genetika MeSH
- ptáci * fyziologie MeSH
- zpěvní ptáci fyziologie genetika MeSH
- zvířata MeSH
- Check Tag
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
Batesian mimicry in brood parasites is often viewed as an evolutionary strategy to mitigate host aggression. Female common cuckoos (Cuculus canorus) exhibit two morphs: the hawk-like grey and the rufous one, potentially maintained by apostatic selection. It was hypothesized that the grey morph's predator-like appearance deters host defences, while the rufous morph benefits from its rarity by evading host attention. Previous research predominantly utilized static cuckoo dummies, lacking insights into real-world interactions. We investigated the effectiveness of the cuckoo morphs in accessing great reed warbler (Acrocephalus arundinaceus) nests under natural conditions. Analysing video-recorded cuckoo attempts, we found no significant difference in nest-access success between the morphs. Both experienced a similar probability of physical attacks when hosts were present, and the rufous morph did not evade host detection more often compared with the grey morph. These results fail to support the assumptions of (a) Batesian mimicry, that hawk-like mimicry enhances nest access or reduces host aggression, and (b) apostatic selection, that the rarity of the rufous morph confers an advantage in successfully accessing the host nest. Future research should aim to identify stages in the cuckoo's life cycle or host interactions where colour polymorphism provides an evolutionary benefit.
Department of Ecology Faculty of Science Charles University Viničná 7 12844 Prague 2 Czech Republic
Institute of Vertebrate Biology of the Czech Academy of Sciences Květná 8 60300 Brno Czech Republic
Zobrazit více v PubMed
Cervo R. 2006. Polistes wasps and their social parasites: an overview. Ann. Zool. Fenn. 43, 531–549.
Mori A, Grasso DA, Visicchio R, Le Moli F. 2001. Comparison of reproductive strategies and raiding behaviour in facultative and obligatory slave-making ants: the case of Formica sanguinea and Polyergus rufescens. Insectes Sociaux 48, 302–314. (10.1007/PL00001782) DOI
Bogusch P, Straka J. 2012. Review and identification of the cuckoo bees of central Europe (Hymenoptera: Halictidae: Sphecodes). Zootaxa 3311, 1–41. (10.11646/zootaxa.3311.1.1) DOI
Blažek R, Polačik M, Smith C, Honza M, Meyer A, Reichard M. 2018. Success of cuckoo catfish brood parasitism reflects coevolutionary history and individual experience of their cichlid hosts. Sci. Adv. 4, eaar4380. (10.1126/sciadv.aar4380) PubMed DOI PMC
Soler M (ed). 2017. Avian brood parasitism: behaviour, ecology, evolution and coevolution. Berlin, Germay: Springer International Publishing. (10.1007/978-3-319-73138-4) DOI
Rothstein SI, Robinson SK (eds). Parasitic birds and their hosts, studies in coevolution. Oxford, UK: Oxford University Press. (10.1093/oso/9780195099768.001.0001) DOI
Galeotti P, Rubolini D, Dunn PO, Fasola M. 2003. Colour polymorphism in birds: causes and functions. J. Evol. Biol. 16, 635–646. (10.1046/j.1420-9101.2003.00569.x) PubMed DOI
Fowlie MK, Krüger O. 2003. The evolution of plumage polymorphism in birds of prey and owls: the apostatic selection hypothesis revisited. J. Evol. Biol. 16, 577–583. (10.1046/j.1420-9101.2003.00564.x) PubMed DOI
Thorogood R, Davies NB. 2013. Hawk mimicry and the evolution of polymorphic cuckoos. Chin. Birds 4, 39–50. (10.5122/cbirds.2013.0002) DOI
Merondun J, et al. . 2024. Evolution and genetic architecture of sex-limited polymorphism in cuckoos. Sci. Adv. 10, eadl5255. (10.1126/sciadv.adl5255) PubMed DOI PMC
Payne RB. 1967. Interspecific communication signals in parasitic birds. Am. Nat. 101, 363–375. (10.1086/282504) DOI
Honza M, Šicha V, Procházka P, Ležalová R. 2006. Host nest defense against a color-dimorphic brood parasite: great reed warblers (Acrocephalus arundinaceus) versus common cuckoos (Cuculus canorus). J. Ornithol. 147, 629–637. (10.1007/s10336-006-0088-y) DOI
York JE, Davies NB. 2017. Female cuckoo calls misdirect host defences towards the wrong enemy. Nat. Ecol. Evol. 1, 1520–1525. (10.1038/s41559-017-0279-3) PubMed DOI
Lee JW, Kim HN, Yoo S, Yoo JC. 2019. Common cuckoo females may escape male sexual harassment by color polymorphism. Scient. Rep. 9, 7515. (10.1038/s41598-019-44024-6) PubMed DOI PMC
Moskát C, Hauber ME, Růžičková J, Marton A, Bán M, Elek Z. 2020. Female-female aggression and male responses to the two colour morphs of female common cuckoos. Sci. Nat. 107, 28. (10.1007/s00114-020-01680-3) PubMed DOI PMC
Antonov A, Stokke BG, Moksnes A, Røskaft E. 2007. Factors influencing the risk of common cuckoo Cuculus canorus parasitism on marsh warblers Acrocephalus palustris. J. Avian Biol. 38, 390–393. (10.1111/j.2007.0908-8857.03813.x) DOI
Moskát C, Honza M. 2000. Effect of nest and nest site characteristics on the risk of cuckoo Cuculus canorus parasitism in the great reed warbler Acrocephalus arundinaceus. Ecography 23, 335–341. (10.1111/j.1600-0587.2000.tb00289.x) DOI
Øien IJ, Honza M, Moksnes A, Røskaft E. 1996. The risk of parasitism in relation to the distance from reed warbler nests to cuckoo perches. J. Anim. Ecol. 65, 147–153. (10.2307/5717) DOI
Batáry P, Báldi A. 2005. Factors affecting the survival of real and artificial great reed warbler’s nests. Biologia (Bratisl.) 60, 215–219.
Campomizzi AJ, Mathewson HA, Morrison ML, Lituma CM, Conkling TJ, Cocimano MC, Farrell SL, Wilkins RN, Butcher JA. 2013. Understanding nest success and brood parasitism in the endangered black-capped vireo: comparisons with two sympatric songbirds. Wilson J. Ornithol. 125, 709–719. (10.1676/13-042.1) DOI
Medina I, Langmore NE. 2016. Batten down the thatches: front-line defences in an apparently defenceless cuckoo host. Anim. Behav. 112, 195–201. (10.1016/j.anbehav.2015.12.006) DOI
Clark KL, Robertson RJ. 1979. Spatial and temporal multi-species nesting aggregations in birds as anti-parasite and anti-predator defenses. Behav. Ecol. Sociobiol. 5, 359–371. (10.1007/BF00292524) DOI
Massoni V, Reboreda JC. 2001. Number of close spatial and temporal neighbors decreases the probability of nest failure and shiny cowbird parasitism in colonial yellow-winged blackbirds. Condor 103, 521–529. (10.1093/condor/103.3.521) DOI
Jelínek V, Procházka P, Požgayová M, Honza M. 2014. Common cuckoos Cuculus canorus change their nest‐searching strategy according to the number of available host nests. Ibis 156, 189–197. (10.1111/ibi.12093) DOI
Canestrari D, Marcos JM, Baglione V. 2009. Cooperative breeding in carrion crows reduces the rate of brood parasitism by great spotted cuckoos. Anim. Behav. 77, 1337–1344. (10.1016/j.anbehav.2009.02.009) DOI
Sealy SG, Neudorf DL, Hobson KA, Gill SA. 1998. Nest defense by potential hosts of the brown-headed cowbird: methodological approaches, benefits of defense, and coevolution. In Parasitic birds and their hosts, studies in coevolution (eds Rothstein SI, Robinson SK), pp. 194–211. New York, NY: Oxford University Press. (10.1093/oso/9780195099768.003.0010) DOI
Welbergen JA, Davies NB. 2009. Strategic variation in mobbing as a front line of defense against brood parasitism. Curr. Biol. 19, 235–240. (10.1016/j.cub.2008.12.041) PubMed DOI
Moyer DC. 1980. On lesser honeyguide and black-collared barbet. Zamb. Ornithol. Soc. Newsl. 10, 159.
Gloag R, Fiorini VD, Reboreda JC, Kacelnik A. 2013. The wages of violence: mobbing by mockingbirds as a frontline defence against brood-parasitic cowbirds. Anim. Behav. 86, 1023–1029. (10.1016/j.anbehav.2013.09.007) DOI
Šulc M, Štětková G, Procházka P, Požgayová M, Sosnovcová K, Studecký J, Honza M. 2020. Caught on camera: circumstantial evidence for fatal mobbing of an avian brood parasite by a host. J. Vertebr. Biol. 69, 1–6. (10.25225/jvb.20027) DOI
Zhao H, Luo H, Yan H, He G, Wang L, Liang W. 2022. Fatal mobbing and attack of the common cuckoo by its warbler hosts. Ecol. Evol. 12, e9649. (10.1002/ece3.9649) PubMed DOI PMC
Dominey WJ. 1983. Mobbing in colonially nesting fishes, especially the bluegill, Lepomis macrochirus. Copeia 1983, 1086. (10.2307/1445113) DOI
Curio E. 1978. The adaptive significance of avian mobbing. Z. Tierpsychol. 48, 175–183. (10.1111/j.1439-0310.1978.tb00254.x) DOI
Tamura N. 1989. Snake-directed mobbing by the Formosan squirrel Callosciurus erythraeus thaiwanensis. Behav. Ecol. Sociobiol. 24, 175–180. (10.1007/BF00292100) DOI
Graw B, Manser MB. 2007. The function of mobbing in cooperative meerkats. Anim. Behav. 74, 507–517. (10.1016/j.anbehav.2006.11.021) DOI
Robertson RJ, Norman RF. 1977. The function and evolution of aggressive host behavior towards the brown-headed cowbird (Molothrus ater). Can. J. Zool. 55, 508–518. (10.1139/z77-066) DOI
Požgayová M, Procházka P, Honza M. 2013. Is shared male assistance with antiparasitic nest defence costly in the polygynous great reed warbler? Anim. Behav. 85, 615–621. (10.1016/j.anbehav.2012.12.024) DOI
Moksnes A, Røskaft E, Hagen LG, Honza M, Mørk C, Olsen PH. 2000. Common cuckoo Cuculus canorus and host behaviour at reed warbler Acrocephalus scirpaceus nests. Ibis 142, 247–258. (10.1111/j.1474-919X.2000.tb04864.x) DOI
Jelínek V, Šulc M, Štětková G, Honza M. 2021. Fast and furious: host aggression modulates behaviour of brood parasites. Ibis 163, 824–833. (10.1111/ibi.12930) DOI
Wang L, Zhao H, Luo H, He G, Yan H, Liang W. 2023. Importance of cooperation: how host nest defenses effectively prevent brood parasitism from the cuckoos. iScience 26, 106458. (10.1016/j.isci.2023.106458) PubMed DOI PMC
Ma L, Yang C, Liu J, Zhang J, Liang W, Møller AP. 2018. Costs of breeding far away from neighbors: isolated host nests are more vulnerable to cuckoo parasitism. Behav. Process. 157, 327–332. (10.1016/j.beproc.2018.07.017) PubMed DOI
Welbergen JA, Davies NB. 2011. A parasite in wolf’s clothing: hawk mimicry reduces mobbing of cuckoos by hosts. Behav. Ecol. 22, 574–579. (10.1093/beheco/arr008) DOI
Davies NB, Welbergen JA. 2008. Cuckoo–hawk mimicry? An experimental test. Proc. R. Soc. B 275, 1817–1822. (10.1098/rspb.2008.0331) PubMed DOI PMC
Thorogood R, Davies NB. 2012. Cuckoos combat socially transmitted defenses of reed warbler hosts with a plumage polymorphism. Science 337, 578–580. (10.1126/science.1220759) PubMed DOI
Koleček J, Šulc M, Piálková R, Troscianko J, Požgayová M, Honza M, Procházka P. 2019. Rufous common cuckoo chicks are not always female. J. Ornithol. 160, 155–163. (10.1007/s10336-018-1591-7) DOI
Moksnes A, Røskaft E. 1995. Egg‐morphs and host preference in the common cuckoo (Cuculus canorus): an analysis of cuckoo and host eggs from European museum collections. J. Zool. 236, 625–648. (10.1111/j.1469-7998.1995.tb02736.x) DOI
Moskát C, Szentpéteri JL, Barta Z. 2002. Adaptations by great reed warblers to brood parasitism: a comparison of populations in sympatry and allopatry with the common cuckoo. Behaviour 139, 1313–1329. (10.1163/156853902321104181) DOI
Moksnes A, Røskaft E, Bičík V, Honza M, Øien IJ. 1993. Cuckoo Cuculus canorus parasitism on Acrocephalus warblers in southern Moravia in the Czech Republic. J. Ornithol. 134, 425–434. (10.1007/BF01639833) DOI
Kleven O, Moksnes A, Røskaft E, Rudolfsen G, Stokke BG, Honza M. 2004. Breeding success of common cuckoos Cuculus canorus parasitising four sympatric species of Acrocephalus warblers. J. Avian Biol. 35, 394–398. (10.1111/j.0908-8857.2004.03359.x) DOI
Honza M, et al. . 2022. Multiple parasitism in an evictor brood parasite: patterns revealed by long-term monitoring, continuous video recording, and genetic analyses. Behav. Ecol. Sociobiol. 76, 161. (10.1007/s00265-022-03270-x) DOI
Moskát C, Honza M. 2002. European cuckoo Cuculus canorus parasitism and host’s rejection behaviour in a heavily parasitized great reed warbler Acrocephalus arundinaceus population. Ibis 144, 614–622. (10.1046/j.1474-919X.2002.00085.x) DOI
Dyrcz A, Hałupka L. 2006. Great reed warbler Acrocephalus arundinaceus and reed warbler Acrocephalus scirpaceus respond differently to cuckoo dummy at the nest. J. Ornithol. 147, 649–652. (10.1007/s10336-006-0097-x) DOI
Požgayová M, Procházka P, Honza M. 2009. Sex-specific defence behaviour against brood parasitism in a host with female-only incubation. Behav. Process. 81, 34–38. (10.1016/j.beproc.2008.12.019) PubMed DOI
Trnka A, Požgayová M, Samaš P, Honza M. 2013. Repeatability of host female and male aggression towards a brood parasite. Ethology 119, 907–917. (10.1111/eth.12133) DOI
Bürkner PC. 2021. Bayesian item response modeling in R with brms and Stan. J. Stat. Softw. 100, 1–54. (10.18637/jss.v100.i05) DOI
R Core Team . 2023. R: a language and environment for statistical computing. Vienna, Austria: R foundation for Statistical computing. See http://www.R-project.org/.
Makowski D, Ben-Shachar M, Lüdecke D. 2019. bayestestR: describing effects and their uncertainty, existence and significance within the Bayesian framework. J. Open Source Softw. 4, 1541. (10.21105/joss.01541) DOI
Lenth RV. 2023. emmeans: Estimated marginal means, aka least-squares means. R package version 1.10.1. See https://CRAN.R-project.org/package=emmeans.
Feeney WE. 2017. Evidence of adaptations and counter-adaptations before the parasite lays its egg: the frontline of the arms race. In Avian brood parasitism: behaviour, ecology, evolution and coevolution (ed. Soler M), pp. 307–324. Cham, Switzerland: Springer International Publishing. (10.1007/978-3-319-73138-4_17) DOI
Mikulica O, Trnka A. 2021. On the behaviour and vocalizations of female common cuckoos Cuculus canorus at the host nest. Bird Stud. 68, 422–425. (10.1080/00063657.2022.2053944) DOI
Soler M, Pérez‐Contreras T, de Neve L. 2014. Great spotted cuckoos frequently lay their eggs while their magpie host is incubating. Ethology 120, 965–972. (10.1111/eth.12267) DOI
Fiorini V, Reboreda J, Tuero D. 2009. Host behaviour and nest-site characteristics affect the likelihood of brood parasitism by shiny cowbirds on chalk-browed mockingbirds. Behaviour 146, 1387–1403. (10.1163/156853909X433338) DOI
Wallace AR. 1889. Darwinism: an exposition of the theory of natural selection with some of its applications. London, UK: Macmillan & Co.
Davies NB. 2011. Cuckoo adaptations: trickery and tuning. J. Zool. 284, 1–14. (10.1111/j.1469-7998.2011.00810.x) DOI
Trnka A, Prokop P. 2012. The effectiveness of hawk mimicry in protecting cuckoos from aggressive hosts. Anim. Behav. 83, 263–268. (10.1016/j.anbehav.2011.10.036) DOI
Trnka A, Grim T. 2013. Color plumage polymorphism and predator mimicry in brood parasites. Front. Zool. 10, 25. (10.1186/1742-9994-10-25) PubMed DOI PMC
Attwood MC, Lund J, Nwaogu CJ, Moya C, Spottiswoode CN. 2023. Aggressive hosts are undeterred by a cuckoo’s hawk mimicry, but probably make good foster parents. Proc. R. Soc. B 290, 20221506. (10.1098/rspb.2022.1506) PubMed DOI PMC
Trnka A, Trnka M, Grim T. 2015. Do rufous common cuckoo females indeed mimic a predator? An experimental test. Biol. J. Linn. Soc. 116, 134–143. (10.1111/bij.12570) DOI
Trnka A, Prokop P, Grim T. 2012. Uncovering dangerous cheats: how do avian hosts recognize adult brood parasites? PLoS One 7, e37445. (10.1371/journal.pone.0037445) PubMed DOI PMC
Davies N. 2000. Cuckoos, cowbirds and other cheats. London, UK: T & AD Poyser.
Honza M, Štětková G, Požgayová M, Samaš P. 2024. Data from: Host nest defence does not act as selective agent against plumage polymorphism in brood parasites. Dryad Digital Repository. (10.5061/dryad.bnzs7h4jw) DOI