Parasitic cuckoo catfish exploit parental responses to stray offspring
Jazyk angličtina Země Velká Británie, Anglie Médium print
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
30967084
PubMed Central
PMC6388028
DOI
10.1098/rstb.2018.0412
Knihovny.cz E-zdroje
- Klíčová slova
- brood parasite, cichlidae, coevolutionary arms race, host–parasite evolution,
- MeSH
- cichlidy parazitologie MeSH
- hnízdění MeSH
- interakce hostitele a parazita * MeSH
- sumci růst a vývoj fyziologie MeSH
- zvířata MeSH
- Check Tag
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Interspecific brood parasitism occurs in several independent lineages of birds and social insects, putatively evolving from intraspecific brood parasitism. The cuckoo catfish, Synodontis multipunctatus, the only known obligatory non-avian brood parasite, exploits mouthbrooding cichlid fishes in Lake Tanganyika, despite the absence of parental care in its evolutionary lineage (family Mochokidae). Cuckoo catfish participate in host spawning events, with their eggs subsequently collected and brooded by parental cichlids, though they can later be selectively rejected by the host. One scenario for the origin of brood parasitism in cuckoo catfish is through predation of cichlid eggs during spawning, eventually resulting in a spatial and temporal match in oviposition by host and parasite. Here we demonstrate experimentally that, uniquely among all known brood parasites, cuckoo catfish have the capacity to re-infect their hosts at a late developmental stage following egg rejection. We show that cuckoo catfish offspring can survive outside the host buccal cavity and re-infect parental hosts at a later incubation phase by exploiting the strong parental instinct of hosts to collect stray offspring. This finding implies an alternative evolutionary origin for cuckoo catfish brood parasitism, with the parental response of host cichlids facilitating its evolution. This article is part of the theme issue 'The coevolutionary biology of brood parasitism: from mechanism to pattern'.
Department of Ecology and Vertebrate Zoology University of Łódź Łódź Poland
The Czech Academy of Sciences Institute of Vertebrate Biology Květná 8 603 65 Brno Czech Republic
Zobrazit více v PubMed
Soler M. 2014. Long-term coevolution between avian brood parasites and their hosts. Biol. Rev. 89, 688–704. (10.1111/brv.12075) PubMed DOI
Soler M. 2018. Avian brood parasitism: behaviour, ecology, evolution and coevolution. Berlin, Germany: Springer.
Yang C, Møller AP, Røskaft E, Moksnes A, Liang W, Stokke BG. 2014. Reject the odd egg: egg recognition mechanisms in parrotbills. Behav. Ecol. 25, 1320–1324. (10.1093/beheco/aru124) DOI
Noh HJ, Gloag R, Langmore NE. 2018. True recognition of nestlings by hosts selects for mimetic cuckoo chicks. Proc. R. Soc. B 285, 20180726 (10.1098/rspb.2018.0726) PubMed DOI PMC
Soler JJ, Pérez-Contreras T, De Neve L, Macías-Sánchez E, Møller AP, Soler M. 2014. Recognizing odd smells and ejection of brood parasitic eggs. An experimental test in magpies of a novel defensive trait against brood parasitism. J. Evol. Biol. 27, 1265–1270. (10.1111/jeb.12377) PubMed DOI
Wang L, Liang W, Yang C, Cheng SJ, Hsu YC, Lu X. 2016. Egg rejection and clutch phenotype variation in the plain prinia Prinia inornata. J. Avian Biol. 47, 788–794. (10.5061/dryad.j4d25) DOI
Soler M, Ruiz-Raya F, Roncalli G, Ibáñez-Álamo JD. 2017. Relationships between egg-recognition and egg-ejection in a grasp-ejector species. PLoS ONE 12, e0166283 (10.1371/journal.pone.0166283) PubMed DOI PMC
Langmore NE, Hunt S, Kilner RM. 2003. Escalation of a coevolutionary arms race through host rejection of brood parasitic young. Nature 422, 157 (10.1038/nature01460). PubMed DOI
Sato NJ, Tokue K, Noske RA, Mikami OK, Ueda K. 2010. Evicting cuckoo nestlings from the nest: a new anti-parasitism behaviour. Biol. Lett. 6, 67–69. (10.1098/rsbl.2009.0540) PubMed DOI PMC
Davies NB. 2011. Cuckoo adaptations: trickery and tuning. J. Zool. 284, 1–14. (10.1111/j.1469-7998.2011.00810.x) DOI
Honza M, Picman J, Grim T, Novák V, Čapek M Jr, Mrlík V. 2001. How to hatch from an egg of great structural strength. A study of the common cuckoo. J. Avian Biol. 32, 249–255. (10.1007/s10336-015-1163-z) DOI
Brooke MDL, Davies NB. 1988. Egg mimicry by cuckoos Cuculus canorus in relation to discrimination by hosts. Nature 335, 630 (10.1038/335630a0) DOI
Langmore NE, Stevens M, Maurer G, Heinsohn R, Hall ML, Peters A, Kilner RM. 2011. Visual mimicry of host nestlings by cuckoos. Proc. R. Soc. B 278, 2455–2463. (10.1098/rspb.2010.2391) PubMed DOI PMC
Spottiswoode CN, Kilner RM, Davies NB. 2012. Brood parasitism. In The evolution of parental care, pp. 226–356. Oxford, UK: Oxford University Press.
Medina I, Langmore NE. 2016. The evolution of acceptance and tolerance in hosts of avian brood parasites. Biol. Rev. 91, 569–577. (10.1111/brv.12181) PubMed DOI
Sato T. 1986. A brood parasitic catfish of mouthbrooding cichlid fishes in Lake Tanganyika. Nature 323, 58 (10.1038/335630a0) PubMed DOI
Keenleyside MH. 1991. Cichlid fishes: behaviour, ecology and evolution (Vol. 2). Berlin, Germany: Springer Science & Business Media.
Blažek R, Polačik M, Smith C, Honza M, Meyer A, Reichard M. 2018. Success of cuckoo catfish brood parasitism reflects coevolutionary history and individual experience of their cichlid hosts. Sci. Adv. 4, eaar4380 (10.1126/sciadv.aar4380) PubMed DOI PMC
Cohen MS, Hawkins MB, Stock DW, Cruz A. 2019. Early life-history features associated with brood parasitism in the cuckoo catfish, Synodontis multipunctatus (Siluriformes: Mochokidae). Phil. Trans. R. Soc. B 374, 20180205 (10.1098/rstb.2018.0205) PubMed DOI PMC
Wootton RJ, Smith C. 2015. Reproductive biology of teleost fishes. Chichester, UK: John Wiley & Sons.
Wisenden BD. 1999. Alloparental care in fishes. Rev. Fish Biol. Fish. 9, 45–70.
Cohen MS, Hawkins MB, Knox-Hayes J, Vinton AC, Cruz A. 2018. A laboratory study of host use by the cuckoo catfish Synodontis multipunctatus. Environ. Biol. Fish. 101, 1417 (10.1007/s10641-018-0788-1) DOI
Hamilton WJ, Orians GH. 1965. Evolution of brood parasitism in altricial birds. Condor 67, 361–382. (10.2307/1365631) DOI
R Core team. 2018. R: A language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing; (http://www.R-project.org/).
Bates D, Maechler M, Bolker B, Walker S. 2015. Fitting linear mixed-effects models using lme4. J. Stat. Softw. 67, 1–48. (10.18637/jss.v067.i01) DOI
Bensimon-Brito A, Cardeira J, Dionísio G, Huysseune A, Cancela ML, Witten PE. 2016. Revisiting in vivo staining with alizarin red S—a valuable approach to analyse zebrafish skeletal mineralization during development and regeneration. BMC Dev. Biol. 16, 2 (10.1186/s12861-016-0102-4) PubMed DOI PMC
Yang C, Wang L, Chen M, Liang W, Møller AP. 2015. Nestling recognition in red-rumped and barn swallows. Behav. Ecol. Sociobiol. 69, 1821–1826. (10.1007/s00265-015-1994-x) DOI
Huo J, Yang C, Su T, Liang W, Møller AP. 2018. Russet sparrows spot alien chicks from their nests. Av. Res. 9, 12 (10.1186/s40657-018-0104-y) DOI
Grim T. 2006. The evolution of nestling discrimination by hosts of parasitic birds: why is rejection so rare? Evol. Ecol. Res. 8, 785–802.
Grim T. 2011. Ejecting chick cheats: a changing paradigm? Front. Zool. 8, 14 (10.1186/1742-9994-8-14) PubMed DOI PMC
Hayes MP. 2015. The biology and ecology of the large blue butterfly Phengaris (Maculinea) arion: a review. J. Insect Conserv. 19, 1037–1051. (10.1007/s10841-015-9820-3) DOI
Ribbink AJ, Marsh AC, Marsh B, Sharp BJ. 1980. Parental behaviour and mixed broods among cichlid fish of Lake Malawi. Afr. Zool. 15, 1–6. (10.1080/02541858.1980.11447677) DOI
Ochi H, Yanagisawa Y. 1996. Interspecific brood-mixing in Tanganyikan cichlids. Environ. Biol. Fish. 45, 141–149. (10.1007/BF00005227) DOI
Shaw RC, Hauber ME. 2009. Experimental support for the role of nest predation in the evolution of brood parasitism. J. Evol. Biol. 22, 1354–1358. (10.1111/j.1420-9101.2009.01745.x) PubMed DOI
Poulin R, Randhawa HS. 2015. Evolution of parasitism along convergent lines: from ecology to genomics. Parasitology 142, S6–S15. (10.1017/S0031182013001674) PubMed DOI PMC
Koblmüller S, Sturmbauer C, Verheyen E, Meyer A, Salzburger W. 2006. Mitochondrial phylogeny and phylogeography of East African squeaker catfishes (Siluriformes: Synodontis). BMC Evol. Biol. 6, 49 (10.1186/1471-2148-6-49) PubMed DOI PMC
figshare
10.6084/m9.figshare.c.4384799