• This record comes from PubMed

Local dynamic stability during gait for predicting falls in elderly people: A one-year prospective study

. 2018 ; 13 (5) : e0197091. [epub] 20180510

Language English Country United States Media electronic-ecollection

Document type Clinical Trial, Journal Article, Research Support, Non-U.S. Gov't

Computing the local dynamic stability using accelerometer data from inertial sensors has recently been proposed as a gait measure which may be able to identify elderly people at fall risk. However, the assumptions supporting this potential were concluded as most studies implement a retrospective fall history observation. The aim of this study was to evaluate the potential of local dynamic stability for fall risk prediction in a cohort of subjects over the age of 60 years using a prospective fall occurrence observation. A total of 131 elderly subjects voluntarily participated in this study. The baseline measurement included gait stability assessment using inertial sensors and clinical examination by Tinetti Balance Assessment Tool. After the baseline measurement, subjects were observed for a period of one year for fall occurrence. Our results demonstrated poor multiple falls predictive ability of trunk local dynamic stability (AUC = 0.673). The predictive ability improved when the local dynamic stability was combined with clinical measures, a combination of trunk medial-lateral local dynamic stability and Tinetti total score being the best predictor (AUC = 0.755). Together, the present findings suggest that the medial-lateral local dynamic stability during gait combined with a clinical score is a potential fall risk assessment measure in the elderly population.

See more in PubMed

World Health Organization [WHO]. Falls. 2016. Available from: http://www.who.int/mediacentre/factsheets/fs344/en/.

World Health Organization [WHO]. WHO global report on falls prevention in older age. 2007. Available from: http://www.who.int/ageing/publications/Falls_prevention7March.pdf?ua=1

Callisaya ML, Blizzard L, Schmidt MD, Martin KL, McGinley JL, Sanders LM, et al. Gait, gait variability and the risk of multiple incident falls in older people: a population-based study. Age Ageing 2011;40: 481–487. doi: 10.1093/ageing/afr055 PubMed DOI

Rubenstein LZ. Falls in older people: epidemiology, risk factors and strategies for prevention. Age Ageing 2006;35: 37–41. doi: 10.1093/ageing/afj018 PubMed DOI

Coelho T, Fernandes A, Santos R, Paúl C, Fernandes L. Quality of standing balance in community-dwelling elderly: Age-related differences in single and dual task conditions. Arch Gerontol Geriat. 2016;67: 34–39. doi: 10.1016/j.archger.2016.06.010 PubMed DOI

Grabiner PC, Biswas ST, Grabiner MD. Age-related changes in spatial and temporal gait variables. Arch Phys Med Rehabil. 2001;82: 31–35. doi: 10.1053/apmr.2001.18219 PubMed DOI

Kang HG, Dingwell JB. Separating the effects of age and walking speed on gait variability, Gait Posture 2008;27: 572–577. doi: 10.1016/j.gaitpost.2007.07.009 PubMed DOI

Aboutorabi A, Arazpour M, Bahramizadeh M, Hutchins SW, Fadayevatan R. The effect of aging on gait parameters in able-bodied older subjects: a literature review. Aging Clin Exp Res. 2016;28: 393–405. doi: 10.1007/s40520-015-0420-6 PubMed DOI

McArthur C, Gonzalez DA, Roy E, Giangregorio L. What are the circumstances of falls and fractures in long-term care? Can J Aging 2016;35: 491–498. doi: 10.1017/S0714980816000556 PubMed DOI

Hausdorff JM, Rios DA, Edelberg HK. Gait variability and fall risk in community-living older adults: a 1-year prospective study. Arch Phys Med Rehabil. 2001;82: 1050–1056. doi: 10.1053/apmr.2001.24893 PubMed DOI

Taylor ME, Delbaere K, Mikolaizak AS, Lord SR, Close JCT. Gait parameter risk factors for falls under simple and dual task conditions in cognitively impaired older people. Gait Posture 2013;37: 126–130. doi: 10.1016/j.gaitpost.2012.06.024 PubMed DOI

Stergiou N, Decker LM. Human movement variability, nonlinear dynamics, and pathology: Is there a connection? Hum Mov Sci. 2011;30: 869–888. doi: 10.1016/j.humov.2011.06.002 PubMed DOI PMC

Rosenblatt NJ, Hurt CP, Latash ML, Grabiner MD. An apparent contradiction: increasing variability to achieve greater precision? Exp Brain Res. 2014;232: 403–413. doi: 10.1007/s00221-013-3748-1 PubMed DOI

Buzzi UH, Stergiou N, Kurz MJ, Hageman PA, Heidel J. Nonlinear dynamics indicates aging affects variability during gait. Clin Biomech. 2003;18: 435–443. doi: 10.1016/S0268-0033(03)00029-9 PubMed DOI

Terrier P, Reynard F. Effect of age on the variability and stability of gait: a cross-sectional treadmill study in healthy individuals between 20 and 69 years of age. Gait Posture 2015;41: 170–174. doi: 10.1016/j.gaitpost.2014.09.024 PubMed DOI

Toebes MJP, Hoozemans MJM, Furrer R, Dekker J, van Dieen JH. Local dynamic stability and variability of gait are associated with fall history in elderly subjects. Gait Posture 2012;36: 527–531. doi: 10.1016/j.gaitpost.2012.05.016 PubMed DOI

Rispens SM, van Schooten KS, Pijnappels M, Daffertshofer A, Beek PJ, van Dieen JH. Identification of fall risk predictors in daily life measurements: Gait characteristics' reliability and association with self-reported fall history. Neurorehabil Neural Repair 2015;29: 54–61. doi: 10.1177/1545968314532031 PubMed DOI

Ihlen EAF, Weiss A, Beck Y, Helbostad JL, Hausdorff JM. A comparison study of local dynamic stability measures of daily life walking in older adult community-dwelling fallers and non-fallers. J Biomech. 2016;49: 1498–1503. doi: 10.1016/j.jbiomech.2016.03.019 PubMed DOI

Bisi MC, Riva F, Stagni R. Measures of gait stability: performance on adults and toddlers at the beginning of independent walking. J Neuroeng Rehabil. 2014;11: 134 doi: 10.1186/1743-0003-11-134 PubMed DOI PMC

Howcroft J, Kofman J, Lemaire ED. Review of fall risk assessment in geriatric populations using inertial sensors. J NeuroEng Rehabil. 2013;10: 91 doi: 10.1186/1743-0003-10-91 PubMed DOI PMC

Hale WA, Delaney MJ, Cable T. Accuracy of patient recall and chart documentation of falls. J Am Board Fam Pract. 1993;6: 239–242. doi: 10.3122/jabfm.6.3.239 PubMed DOI

Lamb SE, Jørstad-Stein EC, Hauer K, Becker C. Development of a common outcome data set for fall injury prevention trials: The Prevention of Falls Network Europe consensus. J Am Geriatr Soc. 2005;53: 1618–1622. doi: 10.1111/j.1532-5415.2005.53455.x PubMed DOI

Bizovska L, Svoboda Z, Vuillerme N, Janura M. Multiscale and Shannon entropies during gait as fall risk predictors—A prospective study. Gait Posture 2017;52: 5–10. doi: 10.1016/j.gaitpost.2016.11.009 PubMed DOI

Svoboda Z, Bizovska L, Janura M, Kubonova E, Janurova K, Vuillerme N. Variability of spatial temporal gait parameters and center of pressure displacements during gait in elderly fallers and nonfallers: A 6-month prospective study. PLoS One 2017;12: e0171997 doi: 10.1371/journal.pone.0171997 PubMed DOI PMC

Tinetti ME, Williams TF, Mayewski R. Fall risk index for elderly patients based on number of chronic disabilities. Am J Med. 1986;80: 429–434. doi: 10.1016/0002-9343(86)90717-5 PubMed DOI

Masud T, Morris RO. Epidemiology of falls. Age Ageing 2001;30: 3–7. PubMed

Brauer SG, Burns YR, Galley P. A prospective study of laboratory and clinical measures of postural stability to predict community-dwelling fallers. J Gerontol A Biol Sci Med Sci. 2000;55: M469–M476. doi: 10.1093/gerona/55.8.M469 PubMed DOI

Pajala S, Era P, Koskenvuo M, Kaprio J, Törmäkangas T, Rantanen T. Force platform balance measures as predictors of indoor and outdoor falls in community-dwelling women aged 63–76 years. J Gerontol A Biol Sci Med Sci. 2008;63: 171–178. doi: 10.1093/gerona/63.2.171 PubMed DOI

Melzer I, Benjuya N, Kaplanski J. Postural stability in the elderly: A comparison between fallers and non-fallers. Age Ageing 2004;33: 602–607. doi: 10.1093/ageing/afh218 PubMed DOI

Riva F, Grimpampi E, Mazzà C, Stagni R. Are gait variability and stability measures influenced by directional changes? BioMed Eng Online 2014;13: 56 doi: 10.1186/1475-925X-13-56 PubMed DOI PMC

Zijlstra W, Hof AL. Assessment of spatio-temporal gait parameters from trunk accelerations during human walking. Gait Posture 2003;18: 1–10. doi: 10.1016/S0966-6362(02)00190-X PubMed DOI

Riva F, Bisi MC, Stagni R. Gait variability and stability measures: Minimum number of strides and within-session reliability. Comput Biol Med. 2014;50: 9–13. doi: 10.1016/j.compbiomed.2014.04.001 PubMed DOI

Rosenstein MT, Collins JJ, De Luca CJ. A practical method for calculating largest Lyapunov exponents from small data sets. Physica D 1993;65: 117–134. doi: 10.1016/0167-2789(93)90009-P DOI

Lord SR, Ward JA, Williams P, Anstey KJ. Physiological factors associated with falls in older community-dwelling women. J Am Geriatr Soc. 1994;42: 1110–1117. doi: 10.1111/j.1532-5415.1994.tb06218.x PubMed DOI

Bruijn SM, Meijer OG, Beek PJ, van Dieën JH. Assessing the stability of human locomotion: A review of current measures. J R Soc Interface 2013;10: 83 doi: 10.1098/rsif.2012.0999 PubMed DOI PMC

Raîche M, Hébert R, Prince F, Corriveau H. Screening older adults at risk of falling with the Tinetti balance scale. Lancet 2000;356: 1001–1002. doi: 10.1016/S0140-6736(00)02695-7 PubMed DOI

Chiu AY, Au-Yeung SS, Lo SK. A comparison of four functional tests in discriminating fallers from non-fallers in older people. Disabil Rehabil. 2003;25: 45–50. PubMed

England SA, Granata KP. The influence of gait speed on local dynamic stability of walking. Gait Posture 2007;25: 172–178. doi: 10.1016/j.gaitpost.2006.03.003 PubMed DOI PMC

Find record

Citation metrics

Logged in users only

Archiving options

Loading data ...