Use of Bipolar Radiofrequency Catheter Ablation in the Treatment of Cardiac Arrhythmias
Jazyk angličtina Země Spojené arabské emiráty Médium print
Typ dokumentu časopisecké články, přehledy
PubMed
29792146
PubMed Central
PMC6131405
DOI
10.2174/1573403x14666180524100608
PII: CCR-EPUB-90652
Knihovny.cz E-zdroje
- Klíčová slova
- Bipolar radiofrequency ablation, arrhythmias, efficacy, heart disease, radiofrequency ablation, safety.,
- MeSH
- katetrizační ablace metody MeSH
- lidé MeSH
- nemoci srdce komplikace terapie MeSH
- srdeční arytmie patologie terapie MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
BACKGROUND: Arrhythmia management is a complex process involving both pharmacological and non-pharmacological approaches. Radiofrequency ablation is the pillar of nonpharmacological arrhythmia treatment. Unipolar ablation is considered to be the gold standard in the treatment of the majority of arrhythmias; however, its efficacy is limited to specific cases. In particular, the creation of deep or transmural lesions to eliminate intramurally originating arrhythmias remains inadequate. Bipolar ablation is proposed as an alternative to overcome unipolar ablation boundaries. RESULTS: Despite promising results gained from in vitro and animal studies showing that bipolar ablation is superior in creating transmural lesions, the use of bipolar ablation in daily clinical practice is limited. Several studies have been published showing that bipolar ablation is effective in the treatment of clinical arrhythmias after failed unipolar ablation, however, there is inconsistency regarding the safety of bipolar ablation within the available research papers. According to research evidence, the most common indications for bipolar ablation use are ventricular originating rhythmic disorders in patients with structural heart disease resistant to standard radiofrequency ablation. CONCLUSION: To allow wider clinical application the efficiency and safety of bipolar ablation need to be verified in future studies.
Zobrazit více v PubMed
Calkins H., Kuck K.H., Cappato R., et al. 2012 HRS/EHRA/ECAS expert consensus statement on catheter and surgical ablation of atrial fibrillation: Recommendations for patient selection, procedural techniques, patient management and follow-up, definitions,endpoints, and research trial design. J. Interv. Card. Electrophysiol. 2011;33(2):171–257. PubMed
Aliot E.M., Stevenson W.G., Almendral-Garrote J.M., et al. EHRA/HRS expert consensus on catheter ablation of ventricular arrhythmias. Europace. 2009;11:771–817. PubMed
Cappato R., Calkins H., Chen S.A., et al. Updated worldwide survey on the methods, efficacy, and safety of catheter ablation for human atrial fibrillation. Circ Arrhythm Electrophysiol. 2010;3(1):32–38. PubMed
Reddy V.Y., Reynolds M.R., Neuzil P., et al. Prophylactic catheter ablation for the prevention of defibrillator therapy. N. Engl. J. Med. 2007;357:2657–2665. PubMed PMC
Stevenson W.G., Wilber D.J., Natale A., et al. Irrigated radiofrequency catheter ablation guided by electroanatomic mapping for recurrent ventricular tachycardia after myocardial infarction: The multicenter thermocool ventricular tachycardia ablation trial. Circulation. 2008;118:2773–2782. PubMed
Chang R.J., Stevenson W.G., Saxon L.A., et al. Increasing catheter ablation lesion size by simultaneous application of radiofrequency current to two adjacent sites. Am. Heart J. 1993;125:1276–1284. PubMed
Koruth J.S., Dukkipati S., Miller M.A., et al. Bipolar irrigated radiofrequency ablation: A therapeutic option for refractory intramural atrial and ventricular tachycardia circuits. Heart Rhythm. 2012;9:1932–1941. PubMed
Teh A.W., Reddy V.Y., Koruth J.S., et al. Bipolar radiofrequency catheter ablation for refractory ventricular outflow tract arrhythmias. J. Cardiovasc. Electrophysiol. 2014;25(10):1093–1099. PubMed
Gizurarson S., Spears D., Sivagangabalan G., et al. Bipolar ablation for deep intra-myocardial circuits: human ex vivo development and in vivo experience. Europace. 2014;16:1684–1688. PubMed
Yamagata K., Wichterle D., Peichl P., et al. Bipolar radiofrequency catheter ablation for refractory perimitral flutter: A case report. BMC Cardiovasc. Disord. 2015;15:1–6. PubMed PMC
Nagashima K., Watanabe I., Okumura Y., et al. Lesion formation by ventricular septal ablation with irrigated electrodes. Circ. J. 2011;75:565–570. PubMed
Bugge E., Nicholson I.A., Thomas S.P. Comparison of bipolar and unipolar radiofrequency ablation in an in vivo experimental model. Eur. J. Cardiothorac. Surg. 2005;28:76–80. PubMed
Sivagangabalan G., Barry M.A., Huang K., et al. Bipolar ablation of the interventricular septum is more efficient at creating a transmural line than sequential unipolar ablation. Pacing Clin. Electrophysiol. 2010;33(1):16–26. PubMed
Anfinsen O-G., Kongsgaard E., Foerster A., et al. Bipolar radiofrequency catheter ablation creates confluent lesions at a larger interelectrode spacing than does unipolar ablation from two electrodes in the porcine heart. Eur. Heart J. 1998;19:1075–1084. PubMed
Doll N., Borger M.A., Fabricius A., et al. Esophageal perforation during left atrial radiofrequency ablation: Is the risk too high? J. Thorac. Cardiovasc. Surg. 2003;125:836–842. PubMed
Gelsomino S., Van Breugel H.N., Pison L., et al. Hybrid thoracoscopic and transvenous catheter ablation of atrial fibrillation. Eur. J. Cardiothorac. Surg. 2014;45(3):401–407. PubMed
Koruth J., Jais P., Petru J., et al. Ablation of atrial fibrillation with pulsed electric fields: An ultra-rapid, tissue-selective modality for cardiac ablation. JACC Clin. Electrophysiol. 2018 Epub ahead of print. PubMed
Wojtaszczyk A., Caluori G., Pešl M., et al. Irreversible electroporation ablation for atrial fibrillation. J. Cardiovasc. Electrophysiol. 2018;29(4):643–651. PubMed
Ohkubo K., Watanabe I., Okumura Y., et al. A novel technique for improved lesions in the coronary sinus. Comparison of bipolar and unipolar ablation. Int. Heart J. 2012;53(2):129–132. PubMed
Ring M.E., Stephen Huang S.K., Graham A.R., et al. Catheter ablation of the ventricular septum with radiofrequency energy. Am. Heart J. 1989;117:1233–1240. PubMed
Kovoor P., Daly M., Pouliopoulos J., et al. Effect of inter-electrode distance on bipolar intramural radiofrequency ablation. Pacing Clin. Electrophysiol. 2005;28:514–520. PubMed
Nagashima K., Watanabe I., Okumura Y., et al. Epicardial ablation with irrigated electrodes: effect of bipolar vs. unipolar ablation on lesion formation. Circ. J. 2012;76(2):322–327. PubMed
La Meir M., Gelsomino S., Lucà F., et al. Minimal invasive surgery for atrial fibrillation: An updated review. Europace. 2013;15:170–182. PubMed
Matsuo S., Yamane T., Date T., et al. Completion of mitral isthmus ablation using a steerable sheath: prospective randomized comparison with a nonsteerable sheath. J. Cardiovasc. Electrophysiol. 2011;22(12):1331–1338. PubMed
Miyazaki S., Hocini M., Linton N., et al. Initial results of efficacy of left linear ablation using a novel simultaneous multielectrode ablation catheter. J. Cardiovasc. Electrophysiol. 2011;22:739–745. PubMed
Wong K.C.K., Jones M., Qureshi N., et al. Balloon occlusion of the distal coronary sinus facilitates mitral isthmus ablation. Heart Rhythm. 2011;8:833–839. PubMed
Bashir Y., Heald S.C., O’Nunain S., et al. Radiofrequency current delivery by way of a bipolar tricuspid annulus-mitral annulus electrode configuration for ablation of posteroseptal accessory pathways. J. Am. Coll. Cardiol. 1993;22(2):550–556. PubMed
Xie B., Heald S.C., Bashir Y., et al. Radiofrequency catheter ablation of septal accessory atrioventricular pathways. Br. Heart J. 1994;72:281–284. PubMed PMC
Scharf C., Ng G.A., Wieczorek M., et al. European survey on efficacy and safety of duty-cycled radiofrequency ablation for atrial fibrillation. Europace. 2012;14(12):1700–1707. PubMed PMC
Andrade J.G., Dubuc M., Rivard L., et al. Efficacy and safety of atrial fibrillation ablation with phased radiofrequency energy and multielectrodecatheters. Heart Rhythm. 2012;9(2):289–296. PubMed
Russo A.M., Stainback R.F., Bailey S.R., et al. ACCF/HRS/AHA/ ASE/HFSA/SCAI/SCCT/SCMR 2013 appropriate use criteria for implantable cardioverter-defibrillators and cardiac resynchronization therapy: A report of the American College of Cardiology Foundation Appropriate Use Criteria Task Force, Heart Rhythm Society, American Heart Association, American Society of Echocardiography, Heart Failure Society of America, Society for Cardiovascular Angiography and Interventions, Society of Cardiovascular Computed Tomography, and Society for Cardiovascular Magnetic Resonance. J. Am. Coll. Cardiol. 2013;61:1318–1368. PubMed
Kamphuis H.C.M., de Leeuw J.R.J., Derksen R., et al. Implantable cardioverter defibrillator recipients: quality of life in recipients with and without ICD shock delivery. Europace. 2003;5:381–389. PubMed
Powell B.D., Saxon L.A., Boehmer J.P., et al. Survival after shock therapy in implantable cardioverter-defibrillator and cardiac resynchronization therapy-defibrillator recipients according to rhythm shocked: The ALTITUDE survival by rhythm study. J. Am. Coll. Cardiol. 2013;62:1674–1679. PubMed
Nguyen D.T., Tzou W.S., Brunnquell M., et al. Clinical and biophysical evaluation of variable bipolar configurations during radiofrequency ablation for treatment of ventricular arrhythmias. Heart Rhythm. 2016;13(11):2161–2171. PubMed
Syed F.F., DeSimone C.V., Ebrille E., et al. Percutaneous epicardial pacing using a novel insulated multi-electrode lead. JACC Clin. Electrophysiol. 2015;1:273–283. PubMed PMC