Metabolic reconstruction and experimental verification of glucose utilization in Desulfurococcus amylolyticus DSM 16532
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články
Grantová podpora
853618
Österreichische Forschungsförderungsgesellschaft
853618
Österreichische Forschungsförderungsgesellschaft
854156
Österreichische Forschungsförderungsgesellschaft
PubMed
29797222
PubMed Central
PMC6182646
DOI
10.1007/s12223-018-0612-5
PII: 10.1007/s12223-018-0612-5
Knihovny.cz E-zdroje
- MeSH
- biomasa MeSH
- Desulfurococcaceae genetika metabolismus MeSH
- fermentace MeSH
- genom bakteriální MeSH
- glukoneogeneze MeSH
- glukosa metabolismus MeSH
- glykolýza MeSH
- metabolické sítě a dráhy MeSH
- oxid uhličitý metabolismus MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- glukosa MeSH
- oxid uhličitý MeSH
Desulfurococcus amylolyticus DSM 16532 is an anaerobic and hyperthermophilic crenarchaeon known to grow on a variety of different carbon sources, including monosaccharides and polysaccharides. Furthermore, D. amylolyticus is one of the few archaea that are known to be able to grow on cellulose. Here, we present the metabolic reconstruction of D. amylolyticus' central carbon metabolism. Based on the published genome, the metabolic reconstruction was completed by integrating complementary information available from the KEGG, BRENDA, UniProt, NCBI, and PFAM databases, as well as from available literature. The genomic analysis of D. amylolyticus revealed genes for both the classical and the archaeal version of the Embden-Meyerhof pathway. The metabolic reconstruction highlighted gaps in carbon dioxide-fixation pathways. No complete carbon dioxide-fixation pathway such as the reductive citrate cycle or the dicarboxylate-4-hydroxybutyrate cycle could be identified. However, the metabolic reconstruction indicated that D. amylolyticus harbors all genes necessary for glucose metabolization. Closed batch experimental verification of glucose utilization by D. amylolyticus was performed in chemically defined medium. The findings from in silico analyses and from growth experiments are discussed with respect to physiological features of hyperthermophilic organisms.
Zobrazit více v PubMed
Abdel Azim A, Pruckner C, Kolar P, Taubner R-S, Fino D, Saracco G, Souza FS, Rittmann SKMR. The physiology of trace elements in biological methane production. Bioresour Technol. 2017;241:775–786. doi: 10.1016/j.biortech.2017.05.211. PubMed DOI
Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. Basic local alignment search tool. J Mol Biol. 1990;215:403–410. doi: 10.1016/S0022-2836(05)80360-2. PubMed DOI
Bar-Even A, Noor E, Milo R. A survey of carbon fixation pathways through a quantitative lens. J Exp Bot. 2011;63:2325–2342. doi: 10.1093/jxb/err417. PubMed DOI
Berg IA, Kockelkorn D, Ramos-Vera WH, Say RF, Zarzycki J, Hügler M, Alber BE, Fuchs G. Autotrophic carbon fixation in archaea. Nat Rev Micro. 2010;8:447–460. doi: 10.1038/nrmicro2365. PubMed DOI
Berg IA, Kockelkorn D, Buckel W, Fuchs G. A 3-hydroxypropionate/4-hydroxybutyrate autotrophic carbon dioxide assimilation pathway in Archaea. Science. 2007;318:1782–1786. doi: 10.1126/science.1149976. PubMed DOI
Boeckmann B, Blatter M-C, Famiglietti L, Hinz U, Lane L, Roechert B, Bairoch A. Protein variety and functional diversity: Swiss-Prot annotation in its biological context. Comptes rendus biologies. 2005;328:882–899. doi: 10.1016/j.crvi.2005.06.001. PubMed DOI
Borrelli RC, Fogliano V. Bread crust melanoidins as potential prebiotic ingredients. Mol Nutr Food Res. 2005;49:673–678. doi: 10.1002/mnfr.200500011. PubMed DOI
Brasen C., Esser D., Rauch B., Siebers B. Carbohydrate Metabolism in Archaea: Current Insights into Unusual Enzymes and Pathways and Their Regulation. Microbiology and Molecular Biology Reviews. 2014;78(1):89–175. doi: 10.1128/MMBR.00041-13. PubMed DOI PMC
Brouns SJJ, Smits N, Wu H, Snijders APL, Wright PC, de Vos WM, van der Oost J. Identification of a novel α-galactosidase from the hyperthermophilic archaeon Sulfolobus solfataricus. J Bacteriol. 2006;188:2392–2399. doi: 10.1128/JB.188.7.2392-2399.2006. PubMed DOI PMC
Chou C-J, Jenney Jr FE, Adams MWW, Kelly RM. Hydrogenesis in hyperthermophilic microorganisms: implications for biofuels. Metab Eng. 2008;10:394–404. doi: 10.1016/j.ymben.2008.06.007. PubMed DOI
Finn RD, Coggill P, Eberhardt RY, Eddy SR, Mistry J, Mitchell AL, Potter SC, Punta M, Qureshi M, Sangrador-Vegas A, Salazar GA, Tate J, Bateman A. The Pfam protein families database: towards a more sustainable future. Nucleic Acids Res. 2016;44:D279–D285. doi: 10.1093/nar/gkv1344. PubMed DOI PMC
Fraga J, Maranha A, Mendes V, Pereira PJB, Empadinhas N, Macedo-Ribeiro S. Structure of mycobacterial maltokinase, the missing link in the essential GlgE-pathway. Sci Rep. 2015;5:8026. doi: 10.1038/srep08026. PubMed DOI PMC
Fukuda W, Ismail YS, Fukui T, Atomi H, Imanaka T. Characterization of an archaeal malic enzyme from the hyperthermophilic archaeon Thermococcus kodakaraensis KOD1. Archaea. 2005;1:293–301. doi: 10.1155/2005/250757. PubMed DOI PMC
Graham JE, Clark ME, Nadler DC, Huffer S, Chokhawala HA, Rowland SE, Blanch HW, Clark DS, Robb FT. Identification and characterization of a multidomain hyperthermophilic cellulase from an archaeal enrichment. Nat Commun. 2011;2:375. doi: 10.1038/ncomms1373. PubMed DOI
Hansen T, Schonheit P. Purification and properties of the firstidentified, archaeal, ATP-dependent 6-phosphofructokinase, an extremely thermophilic non-allosteric enzyme, from the hyperthermophile Desulfurococcus amylolyticus. Arch Microbiol. 2000;173:103–109. doi: 10.1007/s002039900114. PubMed DOI
Huber H, Gallenberger M, Jahn U, Eylert E, Berg IA, Kockelkorn D, Eisenreich W, Fuchs G. A dicarboxylate/4-hydroxybutyrate autotrophic carbon assimilation cycle in the hyperthermophilic Archaeum Ignicoccus hospitalis. Proc Natl Acad Sci. 2008;105:7851–7856. doi: 10.1073/pnas.0801043105. PubMed DOI PMC
Johnsen U, Sutter J-M, Zaiß H, Schönheit P. L-Arabinose degradation pathway in the haloarchaeon Haloferax volcanii involves a novel type of l-arabinose dehydrogenase. Extremophiles. 2013;17:897–909. doi: 10.1007/s00792-013-0572-2. PubMed DOI
Jolley KA, Rapaport E, Hough DW, Danson MJ, Woods WG, Dyall-Smith ML. Dihydrolipoamide dehydrogenase from the halophilic archaeon Haloferax volcanii: homologous overexpression of the cloned gene. J Bacteriol. 1996;178:3044–3048. doi: 10.1128/jb.178.11.3044-3048.1996. PubMed DOI PMC
Kanehisa M, Goto S. KEGG: Kyoto encyclopedia of genes and genomes. Nucleic Acids Res. 2000;28:27–30. doi: 10.1093/nar/28.1.27. PubMed DOI PMC
Kengen SW, de Bok FA, van Loo ND, Dijkema C, Stams AJ, de Vos WM. Evidence for the operation of a novel Embden-Meyerhof pathway that involves ADP-dependent kinases during sugar fermentation by Pyrococcus furiosus. J Biol Chem. 1994;269:17537–11754. PubMed
Kengen SM, Stams AJM, de Vos WM. Sugar metabolism of hyperthermophiles. FEMS Microbiol Rev. 1996;18:119–137. doi: 10.1016/0168-6445(96)00006-X. DOI
Kishishita S, Fujii T, Ishikawa K. Heterologous expression of hyperthermophilic cellulases of archaea Pyrococcus sp. by fungus Talaromyces cellulolyticus. J Ind Microbiol Biotechnol. 2015;42:137–141. doi: 10.1007/s10295-014-1532-2. PubMed DOI PMC
Kochetkova TV, Kublanov IV, Toshchakov SV, Osburn MR, Novikov AA, Bonch-Osmolovskaya EA, Perevalova AA. Thermogladius calderae gen. nov., sp. nov., an anaerobic, hyperthermophilic crenarchaeote from a Kamchatka hot spring. Int J Syst Evol Microbiol. 2016;66:1407–1412. doi: 10.1099/ijsem.0.000916. PubMed DOI
Kublanov IV, Bidjieva SK, Mardanov AV, Bonch-Osmolovskaya EA. Desulfurococcus kamchatkensis sp. nov., a novel hyperthermophilic protein-degrading archaeonisolated from a Kamchatka hot spring. Int J Syst Evol Microbiol. 2009;59:1743–1747. doi: 10.1099/ijs.0.006726-0. PubMed DOI
Lerche H, Pischetsrieder M, Severin T. Maillard reaction of d-glucose: identification of a colored product with conjugated pyrrole and furanone rings. J Agric Food Chem. 2002;50:2984–2986. doi: 10.1021/jf0114031. PubMed DOI
Pawar SS, Niel EWJ. Thermophilic biohydrogen production: how far are we? Appl Microbiol Biotechnol. 2013;97:7999–8009. doi: 10.1007/s00253-013-5141-1. PubMed DOI PMC
Peng N, Ao X, Liang Yun X, She Q. Archaeal promoter architecture and mechanism of gene activation. Biochem Soc Trans. 2011;39:99–103. doi: 10.1042/BST0390099. PubMed DOI
Perevalova AA, Kublanov IV, Bidzhieva SK, Mukhopadhyay B, Bonch-Osmolovskaya EA, Lebedinsky AV. Reclassification of Desulfurococcus mobilis as a synonym of Desulfurococcus mucosus, Desulfurococcus fermentans and Desulfurococcus kamchatkensis as synonyms of Desulfurococcus amylolyticus, and emendation of the D. mucosus and D. amylolyticus species descriptions. Int J Syst Evol Microbiol. 2016;66:514–517. doi: 10.1099/ijsem.0.000747. PubMed DOI
Perevalova AA, Svetlichny VA, Kublanov IV, Chernyh NA, Kostrikina NA, Tourova TP, Kuznetsov BB, Bonch-Osmolovskaya EA. Desulfurococcus fermentans sp. nov., a novel hyperthermophilic archaeon from a Kamchatka hot spring, and emended description of the genus Desulfurococcus. Int J Syst Evol Microbiol. 2005;55:995–999. doi: 10.1099/ijs.0.63378-0. PubMed DOI
Ravin NV, Mardanov AV, Beletsky AV, Kublanov IV, Kolganova TV, Lebedinsky AV, Chernyh NA, Bonch-Osmolovskaya EA, Skryabin KG. Complete genome sequence of the anaerobic, protein-degrading Hyperthermophilic Crenarchaeon Desulfurococcus kamchatkensis. J Bacteriol. 2009;191:2371–2379. doi: 10.1128/JB.01525-08. PubMed DOI PMC
Reischl B, Ergal İ, Rittmann SK-MR. Biohydrogen production characteristics of Desulfurococcus amylolyticus DSM 16532. Int J Hydrog Energy. 2018;43:8747–8753. doi: 10.1016/j.ijhydene.2018.03.121. DOI
Rittmann S, Herwig C. A comprehensive and quantitative review of dark fermentative biohydrogen production. Microb Cell Factories. 2012;11:1–18. doi: 10.1186/1475-2859-11-115. PubMed DOI PMC
Sato T, Atomi H. Novel metabolic pathways in Archaea. Curr Opin Microbiol. 2011;14:307–314. doi: 10.1016/j.mib.2011.04.014. PubMed DOI
Schäfer T, Schönheit P. Maltose fermentation to acetate, CO2 and H2 in the anaerobic hyperthermophilic archaeon Pyrococcus furiosus: evidence for the operation of a novel sugar fermentation pathway. Arch Microbiol. 1992;158:188–202. doi: 10.1007/BF00290815. DOI
Schomburg I, Chang A, Schomburg D. BRENDA, enzyme data and metabolic information. Nucleic Acids Res. 2002;30:47–49. doi: 10.1093/nar/30.1.47. PubMed DOI PMC
Seifert AH, Rittmann S, Herwig C. Analysis of process related factors to increase volumetric productivity and quality of biomethane with Methanothermobacter marburgensis. Appl Energy. 2014;132:155–162. doi: 10.1016/j.apenergy.2014.07.002. DOI
Siebers B, Schönheit P. Unusual pathways and enzymes of central carbohydrate metabolism in Archaea. Curr Opin Microbiol. 2005;8:695–705. doi: 10.1016/j.mib.2005.10.014. PubMed DOI
Susanti D, Johnson EF, Rodriguez JR, Anderson I, Perevalova AA, Kyrpides N, Lucas S, Han J, Lapidus A, Cheng JF, Goodwin L, Pitluck S, Mavrommatis K, Peters L, Land ML, Hauser L, Gopalan V, Chan PP, Lowe TM, Atomi H, Bonch-Osmolovskaya EA, Woyke T, Mukhopadhyay B. Complete genome sequence of Desulfurococcus fermentans, a hyperthermophilic cellulolytic crenarchaeon isolated from a freshwater hot spring in Kamchatka, Russia. J Bacteriol. 2012;194:5703–5704. doi: 10.1128/jb.01314-12. PubMed DOI PMC
Thauer RK. A fifth pathway of carbon fixation. Science. 2007;318:1732–1733. doi: 10.1126/science.1152209. PubMed DOI
Thauer RK, Jungermann K, Decker K. Energy conservation in chemotrophic anaerobic bacteria. Bacteriol Rev. 1977;41:100–180. PubMed PMC
Vanwonterghem I, Evans PN, Parks DH, Jensen PD, Woodcroft BJ, Hugenholtz P, Tyson GW. Methylotrophic methanogenesis discovered in the archaeal phylum Verstraetearchaeota. Nature Microbiology. 2016;1:16170. doi: 10.1038/nmicrobiol.2016.170. PubMed DOI
Verhees CH, Kengen SWM, Tuininga JE, Schut GJ, Adams MWW, de Vos WM, Oost J. The unique features of glycolytic pathways in Archaea. Biochem J. 2003;375:231–246. doi: 10.1042/bj20021472. PubMed DOI PMC
Willquist K, van Niel EWJ. Growth and hydrogen production characteristics of Caldicellulosiruptor saccharolyticus on chemically defined minimal media. Int J Hydrog Energy. 2012;37:4925–4929. doi: 10.1016/j.ijhydene.2011.12.055. DOI
Willquist K, Zeidan AA, van Niel EWJ. Physiological characteristics of the extreme thermophile Caldicellulosiruptor saccharolyticus: an efficient hydrogen cell factory. Microb Cell Factories. 2010;9:89. doi: 10.1186/1475-2859-9-89. PubMed DOI PMC
Woese CR, Fox GE. Phylogenetic structure of the prokaryotic domain: the primary kingdoms. Proc Natl Acad Sci. 1977;74:5088–5090. doi: 10.1073/pnas.74.11.5088. PubMed DOI PMC
Woese CR, Kandler O, Wheelis ML. Towards a natural system of organisms: proposal for the domains Archaea, Bacteria, and Eucarya. Proc Natl Acad Sci U S A. 1990;87:4576–4579. doi: 10.1073/pnas.87.12.4576. PubMed DOI PMC
Methods for quantification of growth and productivity in anaerobic microbiology and biotechnology