Multi-Omics Analysis Reveals a HIF Network and Hub Gene EPAS1 Associated with Lung Adenocarcinoma

. 2018 Jun ; 32 () : 93-101. [epub] 20180531

Jazyk angličtina Země Nizozemsko Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid29859855

Grantová podpora
P20 CA090578 NCI NIH HHS - United States
U19 CA148127 NCI NIH HHS - United States
U19 CA203654 NCI NIH HHS - United States
R01 CA074386 NCI NIH HHS - United States
P50 CA090578 NCI NIH HHS - United States
U01 CA209414 NCI NIH HHS - United States
001 World Health Organization - International
HHSN268201200008I NHLBI NIH HHS - United States
R01 CA092824 NCI NIH HHS - United States
R35 CA197449 NCI NIH HHS - United States
P30 CA023108 NCI NIH HHS - United States
HHSN268201200008C NHLBI NIH HHS - United States

Odkazy

PubMed 29859855
PubMed Central PMC6021270
DOI 10.1016/j.ebiom.2018.05.024
PII: S2352-3964(18)30188-9
Knihovny.cz E-zdroje

Recent technological advancements have permitted high-throughput measurement of the human genome, epigenome, metabolome, transcriptome, and proteome at the population level. We hypothesized that subsets of genes identified from omic studies might have closely related biological functions and thus might interact directly at the network level. Therefore, we conducted an integrative analysis of multi-omic datasets of non-small cell lung cancer (NSCLC) to search for association patterns beyond the genome and transcriptome. A large, complex, and robust gene network containing well-known lung cancer-related genes, including EGFR and TERT, was identified from combined gene lists for lung adenocarcinoma. Members of the hypoxia-inducible factor (HIF) gene family were at the center of this network. Subsequent sequencing of network hub genes within a subset of samples from the Transdisciplinary Research in Cancer of the Lung-International Lung Cancer Consortium (TRICL-ILCCO) consortium revealed a SNP (rs12614710) in EPAS1 associated with NSCLC that reached genome-wide significance (OR = 1.50; 95% CI: 1.31-1.72; p = 7.75 × 10-9). Using imputed data, we found that this SNP remained significant in the entire TRICL-ILCCO consortium (p = .03). Additional functional studies are warranted to better understand interrelationships among genetic polymorphisms, DNA methylation status, and EPAS1 expression.

Biomedical Data Science Geisel School of Medicine at Dartmouth Hanover NH USA

Center for Inherited Disease Research Institute of Genetic Medicine Johns Hopkins University School of Medicine Baltimore MD USA

Clinic of Pulmonology Clinical Center of Serbia Belgrade Serbia

Department of Biostatistics Harvard T H Chan School of Public Health Boston MA USA

Department of Biostatistics School of Public Health University of Washington Seattle WA USA

Department of Cancer Epidemiology and Prevention M Sklodowska Curie Institute Oncology Center Warsaw Poland

Department of Environmental Health Harvard T H Chan School of Public Health Boston MA USA

Department of Environmental Health Harvard T H Chan School of Public Health Boston MA USA; Department of Epidemiology Department of Biostatistics School of Public Health Nanjing Medical University Nanjing China

Department of Epidemiology and Public Health University of Ostrava University of Olomouc Olomouc Czech Republic

Department of Epidemiology Department of Biostatistics School of Public Health Nanjing Medical University Nanjing China

Genetic Cancer Susceptibility group International Agency for Research on Cancer World Health Organization Lyon France

Institute of Translational Medicine University of Liverpool Liverpool United Kingdom

Lunenfeld Tanenbaum Research Institute Sinai Health System University of Toronto Toronto Canada

Nofer Institute of Occupational Medicine Department of Environmental Epidemiology Lodz Poland

Princess Margaret Cancer Centre Toronto Canada

Russian N N Blokhin Cancer Research Centre Moscow Russian Federation

Thoracic Surgery Division Marius Nasta National Institute of Pneumology Bucharest Romania

Zobrazit více v PubMed

ACS Cancer Facts & Figures 2009 . 2009. Estimated new cancer cases and deaths by sex U.

Mountain C.F., Lukeman J.M., Hammar S.P. Lung cancer classification: the relationship of disease extent and cell type to survival in a clinical trials population. J Surg Oncol. 1987;35(3):147–156. PubMed

AJCC Cancer Staging . sixth ed. Springer-Verlag; New York: 2002. Handbook.

Ginsberg R., Vokes E., Raben A. Non-small cell lung cancer: Diagnosis and staging. In: Devita V.J., Hellman S., Rosenberg S., editors. Cancer: principles and practice of oncology. 5th ed. Lippincott-Raven; Philadelphia: 1997. pp. 868–876.

Matakidou A., Eisen T., Houlston R.S. Systematic review of the relationship between family history and lung cancer risk. Br J Cancer. 2005;93(7):825–833. PubMed PMC

Hung R.J., Christiani D.C., Risch A. International lung Cancer consortium: pooled analysis of sequence variants in DNA repair and cell cycle pathways. Cancer Epidemiol Biomarkers Prev. 2008;17(11):3081–3089. PubMed PMC

Altshuler D., Daly M.J., Lander E.S. Genetic mapping in human disease. Science. 2008;322(5903):881–888. PubMed PMC

Craddock N., Hurles M.E., Cardin N. Genome-wide association study of CNVs in 16,000 cases of eight common diseases and 3,000 shared controls. Nature. 2010;464(7289):713–720. PubMed PMC

McKay J.D., Hung R.J., Gaborieau V. Lung cancer susceptibility locus at 5p15.33. Nat Genet. 2008;40(12):1404–1406. PubMed PMC

Wang Y., Broderick P., Webb E. Common 5p15.33 and 6p21.33 variants influence lung cancer risk. Nat Genet. 2008;40(12):1407–1409. PubMed PMC

Hung R.J., McKay J.D., Gaborieau V. A susceptibility locus for lung cancer maps to nicotinic acetylcholine receptor subunit genes on 15q25. Nature. 2008;452(7187):633–637. PubMed

Amos C.I., Wu X., Broderick P. Genome-wide association scan of tag SNPs identifies a susceptibility locus for lung cancer at 15q25.1. Nat Genet. 2008;40(5):616–622. PubMed PMC

Landi M.T., Chatterjee N., Yu K. A genome-wide association study of lung cancer identifies a region of chromosome 5p15 associated with risk for adenocarcinoma. Am J Hum Genet. 2009;85(5):679–691. PubMed PMC

Broderick P., Wang Y., Vijayakrishnan J. Deciphering the impact of common genetic variation on lung cancer risk: a genome-wide association study. Cancer Res. 2009;69(16):6633–6641. PubMed PMC

Truong T., Sauter W., McKay J.D. International lung Cancer consortium: coordinated association study of 10 potential lung cancer susceptibility variants. Carcinogenesis. 2010;31(4):625–633. PubMed PMC

Rafnar T., Sulem P., Besenbacher S. Genome-wide significant association between a sequence variant at 15q15.2 and lung cancer risk. Cancer Res. 2011;71(4):1356–1361. PubMed PMC

Cybulski C., Masojc B., Oszutowska D. Constitutional CHEK2 mutations are associated with a decreased risk of lung and laryngeal cancers. Carcinogenesis. 2008;29(4):762–765. PubMed

Civelek M., Lusis A.J. Systems genetics approaches to understand complex traits. Nat Rev Genet. 2014;15(1):34–48. PubMed PMC

Asomaning K., Miller D.P., Liu G. Second hand smoke, age of exposure and lung cancer risk. Lung Cancer. 2008;61(1):13–20. PubMed PMC

Anderson C.A., Pettersson F.H., Clarke G.M., Cardon L.R., Morris A.P., Zondervan K.T. Data quality control in genetic case-control association studies. Nat Protoc. 2010;5(9):1564–1573. PubMed PMC

Abramovitz M., Ordanic-Kodani M., Wang Y. Optimization of RNA extraction from FFPE tissues for expression profiling in the DASL assay. Biotechniques. 2008;44(3):417–423. PubMed PMC

Wang Y., Wei Y., Gaborieau V. Deciphering associations for lung cancer risk through imputation and analysis of 12,316 cases and 16,831 controls. Eur J Hum Genet. 2015;23(12):1723–1728. PubMed PMC

Landi M.T., Dracheva T., Rotunno M. Gene expression signature of cigarette smoking and its role in lung adenocarcinoma development and survival. PLoS One. 2008;3(2) PubMed PMC

Sanchez-Palencia A., Gomez-Morales M., Gomez-Capilla J.A. Gene expression profiling reveals novel biomarkers in nonsmall cell lung cancer. Int J Cancer. 2011;129(2):355–364. PubMed

Sorlie T., Perou C.M., Tibshirani R. Gene expression patterns of breast carcinomas distinguish tumor subclasses with clinical implications. Proc Natl Acad Sci U S A. 2001;98(19):10869–10874. PubMed PMC

Reinholz M.M., Eckel-Passow J.E., Anderson S.K. Expression profiling of formalin-fixed paraffin-embedded primary breast tumors using cancer-specific and whole genome gene panels on the DASL(R) platform. BMC Med Genomics. 2010;3:60. PubMed PMC

Lee S., Emond M.J., Bamshad M.J. Optimal unified approach for rare-variant association testing with application to small-sample case-control whole-exome sequencing studies. Am J Hum Genet. 2012;91(2):224–237. PubMed PMC

Kachuri L., Amos C.I., McKay J.D. Fine mapping of chromosome 5p15.33 based on a targeted deep sequencing and high density genotyping identifies novel lung cancer susceptibility loci. Carcinogenesis. 2016;37(1):96–105. PubMed PMC

Timofeeva M.N., Hung R.J., Rafnar T. Influence of common genetic variation on lung cancer risk: meta-analysis of 14 900 cases and 29 485 controls. Hum Mol Genet. 2012;21(22):4980–4995. PubMed PMC

Wang Y., McKay J.D., Rafnar T. Rare variants of large effect in BRCA2 and CHEK2 affect risk of lung cancer. Nat Genet. 2014;46(7):736–741. PubMed PMC

Viechtbauer W. Conducting meta-analyses in R with the metafor package. J Stat Softw. 2010;36(1):1–48.

Ionita-Laza I., Lee S., Makarov V., Buxbaum J.D., Lin X. Sequence kernel association tests for the combined effect of rare and common variants. Am J Hum Genet. 2013;92(6):841–853. PubMed PMC

Wigerup C., Pahlman S., Bexell D. Therapeutic targeting of hypoxia and hypoxia-inducible factors in cancer. Pharmacol Ther. 2016;164:152–169. PubMed

Brenner D.R., Amos C.I., Brhane Y. Identification of lung cancer histology-specific variants applying Bayesian framework variant prioritization approaches within the TRICL and ILCCO consortia. Carcinogenesis. 2015;36(11):1314–1326. PubMed PMC

Keith B., Johnson R.S., Simon M.C. HIF1alpha and HIF2alpha: sibling rivalry in hypoxic tumour growth and progression. Nat Rev Cancer. 2011;12(1):9–22. PubMed PMC

Takeda N., O'Dea E.L., Doedens A. Differential activation and antagonistic function of HIF-{alpha} isoforms in macrophages are essential for NO homeostasis. Genes Dev. 2010;24(5):491–501. PubMed PMC

Wiesener M.S., Jurgensen J.S., Rosenberger C. Widespread hypoxia-inducible expression of HIF-2alpha in distinct cell populations of different organs. FASEB J. 2003;17(2):271–273. PubMed

Kim W.Y., Perera S., Zhou B. HIF2alpha cooperates with RAS to promote lung tumorigenesis in mice. J Clin Invest. 2009;119(8):2160–2170. PubMed PMC

Giatromanolaki A., Koukourakis M.I., Sivridis E. Relation of hypoxia inducible factor 1 alpha and 2 alpha in operable non-small cell lung cancer to angiogenic/molecular profile of tumours and survival. Br J Cancer. 2001;85(6):881–890. PubMed PMC

Han S.S., Yeager M., Moore L.E. The chromosome 2p21 region harbors a complex genetic architecture for association with risk for renal cell carcinoma. Hum Mol Genet. 2012;21(5):1190–1200. PubMed PMC

Purdue M.P., Johansson M., Zelenika D. Genome-wide association study of renal cell carcinoma identifies two susceptibility loci on 2p21 and 11q13.3. Nat Genet. 2011;43(1):60–65. PubMed PMC

Ciampa J., Yeager M., Amundadottir L. Large-scale exploration of gene-gene interactions in prostate cancer using a multistage genome-wide association study. Cancer Res. 2011;71(9):3287–3295. PubMed PMC

Ernst J., Kheradpour P., Mikkelsen T.S. Mapping and analysis of chromatin state dynamics in nine human cell types. Nature. 2011;473(7345):43–49. PubMed PMC

Putra A.C., Eguchi H., Lee K.L. The a allele at rs13419896 of EPAS1 is associated with enhanced expression and poor prognosis for non-small cell lung Cancer. PLoS One. 2015;10(8) PubMed PMC

Yoo S., Takikawa S., Geraghty P. Integrative analysis of DNA methylation and gene expression data identifies EPAS1 as a key regulator of COPD. PLoS Genet. 2015;11(1) PubMed PMC

Zhen Q., Liu J.F., Liu J.B. Endothelial PAS domain-containing protein 1 confers TKI-resistance by mediating EGFR and MET pathways in non-small cell lung cancer cells. Cancer Biol Ther. 2015;16(4):549–557. PubMed PMC

Ma X.J., Wang Z., Ryan P.D. A two-gene expression ratio predicts clinical outcome in breast cancer patients treated with tamoxifen. Cancer Cell. 2004;5(6):607–616. PubMed

Munding J.B., Adai A.T., Maghnouj A. Global microRNA expression profiling of microdissected tissues identifies miR-135b as a novel biomarker for pancreatic ductal adenocarcinoma. Int J Cancer. 2012;131(2):E86–E95. PubMed

Freidin M.B., Bhudia N., Lim E., Nicholson A.G., Cookson W.O., Moffatt M.F. Impact of collection and storage of lung tumor tissue on whole genome expression profiling. J Mol Diagn. 2012;14(2):140–148. PubMed PMC

Frank M., Doring C., Metzler D., Eckerle S., Hansmann M.L. Global gene expression profiling of formalin-fixed paraffin-embedded tumor samples: a comparison to snap-frozen material using oligonucleotide microarrays. Virchows Arch. 2007;450(6):699–711. PubMed

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Rare deleterious germline variants and risk of lung cancer

. 2021 Feb 16 ; 5 (1) : 12. [epub] 20210216

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace