Multi-Omics Analysis Reveals a HIF Network and Hub Gene EPAS1 Associated with Lung Adenocarcinoma
Jazyk angličtina Země Nizozemsko Médium print-electronic
Typ dokumentu časopisecké články
Grantová podpora
P20 CA090578
NCI NIH HHS - United States
U19 CA148127
NCI NIH HHS - United States
U19 CA203654
NCI NIH HHS - United States
R01 CA074386
NCI NIH HHS - United States
P50 CA090578
NCI NIH HHS - United States
U01 CA209414
NCI NIH HHS - United States
001
World Health Organization - International
HHSN268201200008I
NHLBI NIH HHS - United States
R01 CA092824
NCI NIH HHS - United States
R35 CA197449
NCI NIH HHS - United States
P30 CA023108
NCI NIH HHS - United States
HHSN268201200008C
NHLBI NIH HHS - United States
PubMed
29859855
PubMed Central
PMC6021270
DOI
10.1016/j.ebiom.2018.05.024
PII: S2352-3964(18)30188-9
Knihovny.cz E-zdroje
- Klíčová slova
- Hypoxia-inducible factor, Integrated analysis, Lung adenocarcinoma, Network analysis, Non-small cell lung cancer,
- MeSH
- adenokarcinom plic MeSH
- adenokarcinom genetika patologie MeSH
- faktor 1 indukovatelný hypoxií - podjednotka alfa genetika MeSH
- genetická predispozice k nemoci MeSH
- genetické asociační studie MeSH
- jednonukleotidový polymorfismus MeSH
- lidé středního věku MeSH
- lidé MeSH
- metylace DNA genetika MeSH
- nádory plic genetika patologie MeSH
- nemalobuněčný karcinom plic genetika patologie MeSH
- regulace genové exprese u nádorů MeSH
- senioři MeSH
- transkripční faktory bHLH genetika MeSH
- Check Tag
- lidé středního věku MeSH
- lidé MeSH
- mužské pohlaví MeSH
- senioři MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- endothelial PAS domain-containing protein 1 MeSH Prohlížeč
- faktor 1 indukovatelný hypoxií - podjednotka alfa MeSH
- HIF1A protein, human MeSH Prohlížeč
- transkripční faktory bHLH MeSH
Recent technological advancements have permitted high-throughput measurement of the human genome, epigenome, metabolome, transcriptome, and proteome at the population level. We hypothesized that subsets of genes identified from omic studies might have closely related biological functions and thus might interact directly at the network level. Therefore, we conducted an integrative analysis of multi-omic datasets of non-small cell lung cancer (NSCLC) to search for association patterns beyond the genome and transcriptome. A large, complex, and robust gene network containing well-known lung cancer-related genes, including EGFR and TERT, was identified from combined gene lists for lung adenocarcinoma. Members of the hypoxia-inducible factor (HIF) gene family were at the center of this network. Subsequent sequencing of network hub genes within a subset of samples from the Transdisciplinary Research in Cancer of the Lung-International Lung Cancer Consortium (TRICL-ILCCO) consortium revealed a SNP (rs12614710) in EPAS1 associated with NSCLC that reached genome-wide significance (OR = 1.50; 95% CI: 1.31-1.72; p = 7.75 × 10-9). Using imputed data, we found that this SNP remained significant in the entire TRICL-ILCCO consortium (p = .03). Additional functional studies are warranted to better understand interrelationships among genetic polymorphisms, DNA methylation status, and EPAS1 expression.
Biomedical Data Science Geisel School of Medicine at Dartmouth Hanover NH USA
Clinic of Pulmonology Clinical Center of Serbia Belgrade Serbia
Department of Biostatistics Harvard T H Chan School of Public Health Boston MA USA
Department of Biostatistics School of Public Health University of Washington Seattle WA USA
Department of Environmental Health Harvard T H Chan School of Public Health Boston MA USA
Institute of Translational Medicine University of Liverpool Liverpool United Kingdom
Lunenfeld Tanenbaum Research Institute Sinai Health System University of Toronto Toronto Canada
Nofer Institute of Occupational Medicine Department of Environmental Epidemiology Lodz Poland
Princess Margaret Cancer Centre Toronto Canada
Russian N N Blokhin Cancer Research Centre Moscow Russian Federation
Thoracic Surgery Division Marius Nasta National Institute of Pneumology Bucharest Romania
Zobrazit více v PubMed
ACS Cancer Facts & Figures 2009 . 2009. Estimated new cancer cases and deaths by sex U.
Mountain C.F., Lukeman J.M., Hammar S.P. Lung cancer classification: the relationship of disease extent and cell type to survival in a clinical trials population. J Surg Oncol. 1987;35(3):147–156. PubMed
AJCC Cancer Staging . sixth ed. Springer-Verlag; New York: 2002. Handbook.
Ginsberg R., Vokes E., Raben A. Non-small cell lung cancer: Diagnosis and staging. In: Devita V.J., Hellman S., Rosenberg S., editors. Cancer: principles and practice of oncology. 5th ed. Lippincott-Raven; Philadelphia: 1997. pp. 868–876.
Matakidou A., Eisen T., Houlston R.S. Systematic review of the relationship between family history and lung cancer risk. Br J Cancer. 2005;93(7):825–833. PubMed PMC
Hung R.J., Christiani D.C., Risch A. International lung Cancer consortium: pooled analysis of sequence variants in DNA repair and cell cycle pathways. Cancer Epidemiol Biomarkers Prev. 2008;17(11):3081–3089. PubMed PMC
Altshuler D., Daly M.J., Lander E.S. Genetic mapping in human disease. Science. 2008;322(5903):881–888. PubMed PMC
Craddock N., Hurles M.E., Cardin N. Genome-wide association study of CNVs in 16,000 cases of eight common diseases and 3,000 shared controls. Nature. 2010;464(7289):713–720. PubMed PMC
McKay J.D., Hung R.J., Gaborieau V. Lung cancer susceptibility locus at 5p15.33. Nat Genet. 2008;40(12):1404–1406. PubMed PMC
Wang Y., Broderick P., Webb E. Common 5p15.33 and 6p21.33 variants influence lung cancer risk. Nat Genet. 2008;40(12):1407–1409. PubMed PMC
Hung R.J., McKay J.D., Gaborieau V. A susceptibility locus for lung cancer maps to nicotinic acetylcholine receptor subunit genes on 15q25. Nature. 2008;452(7187):633–637. PubMed
Amos C.I., Wu X., Broderick P. Genome-wide association scan of tag SNPs identifies a susceptibility locus for lung cancer at 15q25.1. Nat Genet. 2008;40(5):616–622. PubMed PMC
Landi M.T., Chatterjee N., Yu K. A genome-wide association study of lung cancer identifies a region of chromosome 5p15 associated with risk for adenocarcinoma. Am J Hum Genet. 2009;85(5):679–691. PubMed PMC
Broderick P., Wang Y., Vijayakrishnan J. Deciphering the impact of common genetic variation on lung cancer risk: a genome-wide association study. Cancer Res. 2009;69(16):6633–6641. PubMed PMC
Truong T., Sauter W., McKay J.D. International lung Cancer consortium: coordinated association study of 10 potential lung cancer susceptibility variants. Carcinogenesis. 2010;31(4):625–633. PubMed PMC
Rafnar T., Sulem P., Besenbacher S. Genome-wide significant association between a sequence variant at 15q15.2 and lung cancer risk. Cancer Res. 2011;71(4):1356–1361. PubMed PMC
Cybulski C., Masojc B., Oszutowska D. Constitutional CHEK2 mutations are associated with a decreased risk of lung and laryngeal cancers. Carcinogenesis. 2008;29(4):762–765. PubMed
Civelek M., Lusis A.J. Systems genetics approaches to understand complex traits. Nat Rev Genet. 2014;15(1):34–48. PubMed PMC
Asomaning K., Miller D.P., Liu G. Second hand smoke, age of exposure and lung cancer risk. Lung Cancer. 2008;61(1):13–20. PubMed PMC
Anderson C.A., Pettersson F.H., Clarke G.M., Cardon L.R., Morris A.P., Zondervan K.T. Data quality control in genetic case-control association studies. Nat Protoc. 2010;5(9):1564–1573. PubMed PMC
Abramovitz M., Ordanic-Kodani M., Wang Y. Optimization of RNA extraction from FFPE tissues for expression profiling in the DASL assay. Biotechniques. 2008;44(3):417–423. PubMed PMC
Wang Y., Wei Y., Gaborieau V. Deciphering associations for lung cancer risk through imputation and analysis of 12,316 cases and 16,831 controls. Eur J Hum Genet. 2015;23(12):1723–1728. PubMed PMC
Landi M.T., Dracheva T., Rotunno M. Gene expression signature of cigarette smoking and its role in lung adenocarcinoma development and survival. PLoS One. 2008;3(2) PubMed PMC
Sanchez-Palencia A., Gomez-Morales M., Gomez-Capilla J.A. Gene expression profiling reveals novel biomarkers in nonsmall cell lung cancer. Int J Cancer. 2011;129(2):355–364. PubMed
Sorlie T., Perou C.M., Tibshirani R. Gene expression patterns of breast carcinomas distinguish tumor subclasses with clinical implications. Proc Natl Acad Sci U S A. 2001;98(19):10869–10874. PubMed PMC
Reinholz M.M., Eckel-Passow J.E., Anderson S.K. Expression profiling of formalin-fixed paraffin-embedded primary breast tumors using cancer-specific and whole genome gene panels on the DASL(R) platform. BMC Med Genomics. 2010;3:60. PubMed PMC
Lee S., Emond M.J., Bamshad M.J. Optimal unified approach for rare-variant association testing with application to small-sample case-control whole-exome sequencing studies. Am J Hum Genet. 2012;91(2):224–237. PubMed PMC
Kachuri L., Amos C.I., McKay J.D. Fine mapping of chromosome 5p15.33 based on a targeted deep sequencing and high density genotyping identifies novel lung cancer susceptibility loci. Carcinogenesis. 2016;37(1):96–105. PubMed PMC
Timofeeva M.N., Hung R.J., Rafnar T. Influence of common genetic variation on lung cancer risk: meta-analysis of 14 900 cases and 29 485 controls. Hum Mol Genet. 2012;21(22):4980–4995. PubMed PMC
Wang Y., McKay J.D., Rafnar T. Rare variants of large effect in BRCA2 and CHEK2 affect risk of lung cancer. Nat Genet. 2014;46(7):736–741. PubMed PMC
Viechtbauer W. Conducting meta-analyses in R with the metafor package. J Stat Softw. 2010;36(1):1–48.
Ionita-Laza I., Lee S., Makarov V., Buxbaum J.D., Lin X. Sequence kernel association tests for the combined effect of rare and common variants. Am J Hum Genet. 2013;92(6):841–853. PubMed PMC
Wigerup C., Pahlman S., Bexell D. Therapeutic targeting of hypoxia and hypoxia-inducible factors in cancer. Pharmacol Ther. 2016;164:152–169. PubMed
Brenner D.R., Amos C.I., Brhane Y. Identification of lung cancer histology-specific variants applying Bayesian framework variant prioritization approaches within the TRICL and ILCCO consortia. Carcinogenesis. 2015;36(11):1314–1326. PubMed PMC
Keith B., Johnson R.S., Simon M.C. HIF1alpha and HIF2alpha: sibling rivalry in hypoxic tumour growth and progression. Nat Rev Cancer. 2011;12(1):9–22. PubMed PMC
Takeda N., O'Dea E.L., Doedens A. Differential activation and antagonistic function of HIF-{alpha} isoforms in macrophages are essential for NO homeostasis. Genes Dev. 2010;24(5):491–501. PubMed PMC
Wiesener M.S., Jurgensen J.S., Rosenberger C. Widespread hypoxia-inducible expression of HIF-2alpha in distinct cell populations of different organs. FASEB J. 2003;17(2):271–273. PubMed
Kim W.Y., Perera S., Zhou B. HIF2alpha cooperates with RAS to promote lung tumorigenesis in mice. J Clin Invest. 2009;119(8):2160–2170. PubMed PMC
Giatromanolaki A., Koukourakis M.I., Sivridis E. Relation of hypoxia inducible factor 1 alpha and 2 alpha in operable non-small cell lung cancer to angiogenic/molecular profile of tumours and survival. Br J Cancer. 2001;85(6):881–890. PubMed PMC
Han S.S., Yeager M., Moore L.E. The chromosome 2p21 region harbors a complex genetic architecture for association with risk for renal cell carcinoma. Hum Mol Genet. 2012;21(5):1190–1200. PubMed PMC
Purdue M.P., Johansson M., Zelenika D. Genome-wide association study of renal cell carcinoma identifies two susceptibility loci on 2p21 and 11q13.3. Nat Genet. 2011;43(1):60–65. PubMed PMC
Ciampa J., Yeager M., Amundadottir L. Large-scale exploration of gene-gene interactions in prostate cancer using a multistage genome-wide association study. Cancer Res. 2011;71(9):3287–3295. PubMed PMC
Ernst J., Kheradpour P., Mikkelsen T.S. Mapping and analysis of chromatin state dynamics in nine human cell types. Nature. 2011;473(7345):43–49. PubMed PMC
Putra A.C., Eguchi H., Lee K.L. The a allele at rs13419896 of EPAS1 is associated with enhanced expression and poor prognosis for non-small cell lung Cancer. PLoS One. 2015;10(8) PubMed PMC
Yoo S., Takikawa S., Geraghty P. Integrative analysis of DNA methylation and gene expression data identifies EPAS1 as a key regulator of COPD. PLoS Genet. 2015;11(1) PubMed PMC
Zhen Q., Liu J.F., Liu J.B. Endothelial PAS domain-containing protein 1 confers TKI-resistance by mediating EGFR and MET pathways in non-small cell lung cancer cells. Cancer Biol Ther. 2015;16(4):549–557. PubMed PMC
Ma X.J., Wang Z., Ryan P.D. A two-gene expression ratio predicts clinical outcome in breast cancer patients treated with tamoxifen. Cancer Cell. 2004;5(6):607–616. PubMed
Munding J.B., Adai A.T., Maghnouj A. Global microRNA expression profiling of microdissected tissues identifies miR-135b as a novel biomarker for pancreatic ductal adenocarcinoma. Int J Cancer. 2012;131(2):E86–E95. PubMed
Freidin M.B., Bhudia N., Lim E., Nicholson A.G., Cookson W.O., Moffatt M.F. Impact of collection and storage of lung tumor tissue on whole genome expression profiling. J Mol Diagn. 2012;14(2):140–148. PubMed PMC
Frank M., Doring C., Metzler D., Eckerle S., Hansmann M.L. Global gene expression profiling of formalin-fixed paraffin-embedded tumor samples: a comparison to snap-frozen material using oligonucleotide microarrays. Virchows Arch. 2007;450(6):699–711. PubMed
Rare deleterious germline variants and risk of lung cancer