Rare deleterious germline variants and risk of lung cancer

. 2021 Feb 16 ; 5 (1) : 12. [epub] 20210216

Status PubMed-not-MEDLINE Jazyk angličtina Země Velká Británie, Anglie Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid33594163

Grantová podpora
R01 CA060691 NCI NIH HHS - United States
U19 CA203654 NCI NIH HHS - United States
R01 CA084354 NCI NIH HHS - United States
R01 HL110883 NHLBI NIH HHS - United States
U01 CA076293 NCI NIH HHS - United States
R01 CA080127 NCI NIH HHS - United States
R01 CA141769 NCI NIH HHS - United States
P30 ES006096 NIEHS NIH HHS - United States
P50 CA090578 NCI NIH HHS - United States
P30 CA022453 NCI NIH HHS - United States
S10 RR024574 NCRR NIH HHS - United States
HHSN261201300011C NCI NIH HHS - United States
R01 CA134682 NCI NIH HHS - United States
R01 CA134433 NCI NIH HHS - United States
R01 HL113264 NHLBI NIH HHS - United States
R01 HL082487 NHLBI NIH HHS - United States
R01 CA250905 NCI NIH HHS - United States
U19 CA148127 NCI NIH HHS - United States
P20 GM103534 NIGMS NIH HHS - United States
R01 CA092824 NCI NIH HHS - United States
R01 CA087895 NCI NIH HHS - United States
U01 HL089897 NHLBI NIH HHS - United States
K07 CA181480 NCI NIH HHS - United States
HHSN268201100011I NHLBI NIH HHS - United States
HHSN268201100011C NHLBI NIH HHS - United States
R01 CA127219 NCI NIH HHS - United States
R01 CA074386 NCI NIH HHS - United States
P30 CA023108 NCI NIH HHS - United States
U01 HL089856 NHLBI NIH HHS - United States
P30 ES030285 NIEHS NIH HHS - United States
P30 CA125123 NCI NIH HHS - United States
DP1 AG072751 NIA NIH HHS - United States
U01 CA243483 NCI NIH HHS - United States
HHSN268200782096C NHLBI NIH HHS - United States
HHSN268201200007C NHLBI NIH HHS - United States
N01HG65404 NHGRI NIH HHS - United States
R35 GM122598 NIGMS NIH HHS - United States
U01 CA209414 NCI NIH HHS - United States
R03 CA077118 NCI NIH HHS - United States
001 World Health Organization - International
DP1 CA174424 NCI NIH HHS - United States

Odkazy

PubMed 33594163
PubMed Central PMC7887261
DOI 10.1038/s41698-021-00146-7
PII: 10.1038/s41698-021-00146-7
Knihovny.cz E-zdroje

Recent studies suggest that rare variants exhibit stronger effect sizes and might play a crucial role in the etiology of lung cancers (LC). Whole exome plus targeted sequencing of germline DNA was performed on 1045 LC cases and 885 controls in the discovery set. To unveil the inherited causal variants, we focused on rare and predicted deleterious variants and small indels enriched in cases or controls. Promising candidates were further validated in a series of 26,803 LCs and 555,107 controls. During discovery, we identified 25 rare deleterious variants associated with LC susceptibility, including 13 reported in ClinVar. Of the five validated candidates, we discovered two pathogenic variants in known LC susceptibility loci, ATM p.V2716A (Odds Ratio [OR] 19.55, 95%CI 5.04-75.6) and MPZL2 p.I24M frameshift deletion (OR 3.88, 95%CI 1.71-8.8); and three in novel LC susceptibility genes, POMC c.*28delT at 3' UTR (OR 4.33, 95%CI 2.03-9.24), STAU2 p.N364M frameshift deletion (OR 4.48, 95%CI 1.73-11.55), and MLNR p.Q334V frameshift deletion (OR 2.69, 95%CI 1.33-5.43). The potential cancer-promoting role of selected candidate genes and variants was further supported by endogenous DNA damage assays. Our analyses led to the identification of new rare deleterious variants with LC susceptibility. However, in-depth mechanistic studies are still needed to evaluate the pathogenic effects of these specific alleles.

Channing Division of Network Medicine Department of Medicine Brigham and Women's Hospital and Harvard Medical School Boston MA USA

Dan L Duncan Comprehensive Cancer Center Department of Medicine Baylor College of Medicine Houston TX USA

Department of Biomedical Data Science Geisel School of Medicine Dartmouth College Lebanon NH USA

Department of Molecular and Human Genetics Baylor College of Medicine Houston TX USA

Department of Pediatrics Baylor College of Medicine Houston TX USA

Department of Thoracopulmonary Pathology Service of Pathology Clinical Center of Serbia Belgrade Serbia

Department of Translational Molecular Pathology The University of Texas MD Anderson Cancer Center Houston TX USA

Faculty of Health Sciences Palacky University Olomouc Czech Republic

Harvard University T H Chan School of Public Health Boston MA USA

Institute for Clinical and Translational Research Baylor College of Medicine Houston TX USA

Institute of Public Health and Preventive Medicine Charles University 2nd Faculty of Medicine Prague Czech Republic

International Agency for Research on Cancer Lyon France

Karmanos Cancer Institute Wayne State University Detroit MI USA

Louisiana State University Health Sciences Center New Orleans LA USA

Lunenfeld Tanenbaum Research Institute Sinai Health System Toronto ON Canada

M Sklodowska Curie National Research Institute of Oncology Warsaw Poland

Mayo Clinic College of Medicine Rochester MN USA

Mayo Clinic College of Medicine Scottsdale AZ USA

Medical College of Wisconsin Milwaukee WI USA

Michael E DeBakey Veterans Affairs Medical Center Houston TX USA

National Human Genome Research Institute Bethesda MD USA

National Institute of Public Health Bucharest Romania

Nofer Institute of Occupational Medicine Department of Environmental Epidemiology Lodz Poland

Princess Margaret Cancer Center Toronto ON Canada

Roy Castle Lung Cancer Research Programme The University of Liverpool Department of Molecular and Clinical Cancer Medicine Liverpool UK

Russian N N Blokhin Cancer Research Centre Moscow Russian Federation

The University of Toledo College of Medicine Toledo OH USA

University of Cincinnati College of Medicine Cincinnati OH USA

Zobrazit více v PubMed

Rizvi NA, et al. Cancer immunology. Mutational landscape determines sensitivity to PD-1 blockade in non-small cell lung cancer. Science. 2015;348:124–128. doi: 10.1126/science.aaa1348. PubMed DOI PMC

Bosse Y, Amos CI. A decade of GWAS results in lung cancer. Cancer Epidemiol. Biomark. Prev. 2018;27:363–379. doi: 10.1158/1055-9965.EPI-16-0794. PubMed DOI PMC

Wei C, et al. A case-control study of a sex-specific association between a 15q25 variant and lung cancer risk. Cancer Epidemiol. Biomark. Prev. 2011;20:2603–2609. doi: 10.1158/1055-9965.EPI-11-0749. PubMed DOI PMC

Bierut LJ, et al. Variants in nicotinic receptors and risk for nicotine dependence. Am. J. Psychiatry. 2008;165:1163–1171. doi: 10.1176/appi.ajp.2008.07111711. PubMed DOI PMC

Chen, L. S., et al. CHRNA5 risk variant predicts delayed smoking cessation and earlier lung cancer diagnosis–a meta-analysis. J. Natl Cancer Inst.107, djv100 (2015). PubMed PMC

Chen LS, et al. Interplay of genetic risk factors (CHRNA5-CHRNA3-CHRNB4) and cessation treatments in smoking cessation success. Am. J. Psychiatry. 2012;169:735–742. doi: 10.1176/appi.ajp.2012.11101545. PubMed DOI PMC

Mucci LA, et al. Familial risk and heritability of cancer among twins in Nordic countries. JAMA. 2016;315:68–76. doi: 10.1001/jama.2015.17703. PubMed DOI PMC

Kang G, Lin D, Hakonarson H, Chen J. Two-stage extreme phenotype sequencing design for discovering and testing common and rare genetic variants: efficiency and power. Hum. Hered. 2012;73:139–147. doi: 10.1159/000337300. PubMed DOI PMC

Lamina C. Digging into the extremes: a useful approach for the analysis of rare variants with continuous traits? BMC Proc. 2011;5(Suppl. 9):S105. doi: 10.1186/1753-6561-5-S9-S105. PubMed DOI PMC

Li D, Lewinger JP, Gauderman WJ, Murcray CE, Conti D. Using extreme phenotype sampling to identify the rare causal variants of quantitative traits in association studies. Genet. Epidemiol. 2011;35:790–799. doi: 10.1002/gepi.20628. PubMed DOI PMC

Gorlov IP, Gorlova OY, Sunyaev SR, Spitz MR, Amos CI. Shifting paradigm of association studies: value of rare single-nucleotide polymorphisms. Am. J. Hum. Genet. 2008;82:100–112. doi: 10.1016/j.ajhg.2007.09.006. PubMed DOI PMC

Gorlov IP, Gorlova OY, Frazier ML, Spitz MR, Amos CI. Evolutionary evidence of the effect of rare variants on disease etiology. Clin. Genet. 2011;79:199–206. doi: 10.1111/j.1399-0004.2010.01535.x. PubMed DOI PMC

Tennessen JA, et al. Evolution and functional impact of rare coding variation from deep sequencing of human exomes. Science. 2012;337:64–69. doi: 10.1126/science.1219240. PubMed DOI PMC

Choi YW, et al. EGFR exon 19 deletion is associated with favorable overall survival after first-line gefitinib therapy in advanced non-small cell lung cancer patients. Am. J. Clin. Oncol. 2018;41:385–390. doi: 10.1097/COC.0000000000000282. PubMed DOI

Sequist LV, et al. First-line gefitinib in patients with advanced non-small-cell lung cancer harboring somatic EGFR mutations. J. Clin. Oncol. 2008;26:2442–2449. doi: 10.1200/JCO.2007.14.8494. PubMed DOI

Tian Y, et al. Different subtypes of EGFR exon19 mutation can affect prognosis of patients with non-small cell lung adenocarcinoma. PLoS ONE. 2018;13:e0201682. doi: 10.1371/journal.pone.0201682. PubMed DOI PMC

Xiong D, et al. A recurrent mutation in PARK2 is associated with familial lung cancer. Am. J. Hum. Genet. 2015;96:301–308. doi: 10.1016/j.ajhg.2014.12.016. PubMed DOI PMC

Wang Y, et al. Rare variants of large effect in BRCA2 and CHEK2 affect risk of lung cancer. Nat. Genet. 2014;46:736–741. doi: 10.1038/ng.3002. PubMed DOI PMC

Liu Y, et al. Rare variants in known susceptibility loci and their contribution to risk of lung cancer. J. Thorac. Oncol. 2018;13:1483–1495. doi: 10.1016/j.jtho.2018.06.016. PubMed DOI PMC

Liu Y, et al. Focused analysis of exome sequencing data for rare germline mutations in familial and sporadic lung cancer. J. Thorac. Oncol. 2016;11:52–61. doi: 10.1016/j.jtho.2015.09.015. PubMed DOI PMC

Ji X, et al. Protein-altering germline mutations implicate novel genes related to lung cancer development. Nat. Commun. 2020;11:2220. doi: 10.1038/s41467-020-15905-6. PubMed DOI PMC

Peng B, Li B, Han Y, Amos CI. Power analysis for case-control association studies of samples with known family histories. Hum. Genet. 2010;127:699–704. doi: 10.1007/s00439-010-0824-5. PubMed DOI PMC

Osann KE. Lung cancer in women: the importance of smoking, family history of cancer, and medical history of respiratory disease. Cancer Res. 1991;51:4893–4897. PubMed

Cote ML, et al. Increased risk of lung cancer in individuals with a family history of the disease: a pooled analysis from the International Lung Cancer Consortium. Eur. J. Cancer. 2012;48:1957–1968. doi: 10.1016/j.ejca.2012.01.038. PubMed DOI PMC

Loman NJ, et al. Performance comparison of benchtop high-throughput sequencing platforms. Nat. Biotechnol. 2012;30:434–439. doi: 10.1038/nbt.2198. PubMed DOI

Albers CA, et al. Dindel: accurate indel calls from short-read data. Genome Res. 2011;21:961–973. doi: 10.1101/gr.112326.110. PubMed DOI PMC

Minoche AE, Dohm JC, Himmelbauer H. Evaluation of genomic high-throughput sequencing data generated on Illumina HiSeq and genome analyzer systems. Genome Biol. 2011;12:R112. doi: 10.1186/gb-2011-12-11-r112. PubMed DOI PMC

Balzer S, Malde K, Jonassen I. Systematic exploration of error sources in pyrosequencing flowgram data. Bioinformatics. 2011;27:i304–i309. doi: 10.1093/bioinformatics/btr251. PubMed DOI PMC

Wang Y, et al. Deciphering associations for lung cancer risk through imputation and analysis of 12,316 cases and 16,831 controls. Eur. J. Hum. Genet. 2015;23:1723–1728. doi: 10.1038/ejhg.2015.48. PubMed DOI PMC

Dong J, et al. Association analyses identify multiple new lung cancer susceptibility loci and their interactions with smoking in the Chinese population. Nat. Genet. 2012;44:895–899. doi: 10.1038/ng.2351. PubMed DOI PMC

McKay JD, et al. Large-scale association analysis identifies new lung cancer susceptibility loci and heterogeneity in genetic susceptibility across histological subtypes. Nat. Genet. 2017;49:1126–1132. doi: 10.1038/ng.3892. PubMed DOI PMC

Shrine N, et al. New genetic signals for lung function highlight pathways and chronic obstructive pulmonary disease associations across multiple ancestries. Nat. Genet. 2019;51:481–493. doi: 10.1038/s41588-018-0321-7. PubMed DOI PMC

Zhu Z, et al. Genetic overlap of chronic obstructive pulmonary disease and cardiovascular disease-related traits: a large-scale genome-wide cross-trait analysis. Respir. Res. 2019;20:64. doi: 10.1186/s12931-019-1036-8. PubMed DOI PMC

Kichaev G, et al. Leveraging polygenic functional enrichment to improve GWAS power. Am. J. Hum. Genet. 2019;104:65–75. doi: 10.1016/j.ajhg.2018.11.008. PubMed DOI PMC

Lewis BP, Burge CB, Bartel DP. Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. Cell. 2005;120:15–20. doi: 10.1016/j.cell.2004.12.035. PubMed DOI

Fagerberg L, et al. Analysis of the human tissue-specific expression by genome-wide integration of transcriptomics and antibody-based proteomics. Mol. Cell Proteom. 2014;13:397–406. doi: 10.1074/mcp.M113.035600. PubMed DOI PMC

Xia J, et al. Bacteria-to-human protein networks reveal origins of endogenous DNA damage. Cell. 2019;176:127–143 e124. doi: 10.1016/j.cell.2018.12.008. PubMed DOI PMC

Bosse Y, et al. Transcriptome-wide association study reveals candidate causal genes for lung cancer. Int. J. Cancer. 2020;146:1862–1878. doi: 10.1002/ijc.32771. PubMed DOI PMC

Selvan ME, et al. Inherited rare, deleterious variants in ATM increase lung adenocarcinoma risk. J. Thorac. Oncol. 2020;15:1871–1879. doi: 10.1016/j.jtho.2020.08.017. PubMed DOI PMC

Parry EM, et al. Germline mutations in DNA repair genes in lung adenocarcinoma. J. Thorac. Oncol. 2017;12:1673–1678. doi: 10.1016/j.jtho.2017.08.011. PubMed DOI PMC

Yang H, et al. ATM sequence variants associate with susceptibility to non-small cell lung cancer. Int. J. Cancer. 2007;121:2254–2259. doi: 10.1002/ijc.22918. PubMed DOI PMC

Lo YL, et al. ATM polymorphisms and risk of lung cancer among never smokers. Lung Cancer. 2010;69:148–154. doi: 10.1016/j.lungcan.2009.11.007. PubMed DOI

Hsia TC, et al. Effects of ataxia telangiectasia mutated (ATM) genotypes and smoking habits on lung cancer risk in Taiwan. Anticancer Res. 2013;33:4067–4071. PubMed

Chenevix-Trench G, et al. Dominant negative ATM mutations in breast cancer families. J. Natl Cancer Inst. 2002;94:205–215. doi: 10.1093/jnci/94.3.205. PubMed DOI

Morgan SE, Lovly C, Pandita TK, Shiloh Y, Kastan MB. Fragments of ATM which have dominant-negative or complementing activity. Mol. Cell Biol. 1997;17:2020–2029. doi: 10.1128/MCB.17.4.2020. PubMed DOI PMC

Bakkenist CJ, Kastan MB. DNA damage activates ATM through intermolecular autophosphorylation and dimer dissociation. Nature. 2003;421:499–506. doi: 10.1038/nature01368. PubMed DOI

Scott SP, et al. Missense mutations but not allelic variants alter the function of ATM by dominant interference in patients with breast cancer. Proc. Natl Acad. Sci. USA. 2002;99:925–930. doi: 10.1073/pnas.012329699. PubMed DOI PMC

Kuhne M, et al. A double-strand break repair defect in ATM-deficient cells contributes to radiosensitivity. Cancer Res. 2004;64:500–508. doi: 10.1158/0008-5472.CAN-03-2384. PubMed DOI

Dai J, et al. Genome-wide association study of INDELs identified four novel susceptibility loci associated with lung cancer risk. Int. J. Cancer. 2020;146:2855–2864. doi: 10.1002/ijc.32698. PubMed DOI PMC

Bademci G, et al. MPZL2 is a novel gene associated with autosomal recessive nonsyndromic moderate hearing loss. Hum. Genet. 2018;137:479–486. doi: 10.1007/s00439-018-1901-4. PubMed DOI PMC

Wesdorp M, et al. MPZL2, encoding the epithelial junctional protein myelin protein zero-like 2, is essential for hearing in man and mouse. Am. J. Hum. Genet. 2018;103:74–88. doi: 10.1016/j.ajhg.2018.05.011. PubMed DOI PMC

Guttinger M, et al. Epithelial V-like antigen (EVA), a novel member of the immunoglobulin superfamily, expressed in embryonic epithelia with a potential role as homotypic adhesion molecule in thymus histogenesis. J. Cell Biol. 1998;141:1061–1071. doi: 10.1083/jcb.141.4.1061. PubMed DOI PMC

Einhorn Y, et al. Differential analysis of mutations in the Jewish population and their implications for diseases. Genet. Res. 2017;99:e3. doi: 10.1017/S0016672317000015. PubMed DOI PMC

Shi L, et al. Comprehensive population screening in the Ashkenazi Jewish population for recurrent disease-causing variants. Clin. Genet. 2017;91:599–604. doi: 10.1111/cge.12834. PubMed DOI PMC

Kerem B, Chiba-Falek O, Kerem E. Cystic fibrosis in Jews: frequency and mutation distribution. Genet. Test. 1997;1:35–39. doi: 10.1089/gte.1997.1.35. PubMed DOI

Powers J, et al. A rare TP53 mutation predominant in Ashkenazi Jews confers risk of multiple cancers. Cancer Res. 2020;80:3732–3744. doi: 10.1158/0008-5472.CAN-20-1390. PubMed DOI PMC

Picciotto MR, Mineur YS. Molecules and circuits involved in nicotine addiction: the many faces of smoking. Neuropharmacology. 2014;76 Pt B:545–553. doi: 10.1016/j.neuropharm.2013.04.028. PubMed DOI PMC

Huang H, Xu Y, van den Pol AN. Nicotine excites hypothalamic arcuate anorexigenic proopiomelanocortin neurons and orexigenic neuropeptide Y neurons: similarities and differences. J. Neurophysiol. 2011;106:1191–1202. doi: 10.1152/jn.00740.2010. PubMed DOI PMC

Mineur YS, et al. Nicotine decreases food intake through activation of POMC neurons. Science. 2011;332:1330–1332. doi: 10.1126/science.1201889. PubMed DOI PMC

Wenczl E, et al. (Pheo)melanin photosensitizes UVA-induced DNA damage in cultured human melanocytes. J. Invest. Dermatol. 1998;111:678–682. doi: 10.1046/j.1523-1747.1998.00357.x. PubMed DOI

Cui R, et al. Central role of p53 in the suntan response and pathologic hyperpigmentation. Cell. 2007;128:853–864. doi: 10.1016/j.cell.2006.12.045. PubMed DOI

Suzuki I, et al. Increase of pro-opiomelanocortin mRNA prior to tyrosinase, tyrosinase-related protein 1, dopachrome tautomerase, Pmel-17/gp100, and P-protein mRNA in human skin after ultraviolet B irradiation. J. Invest. Dermatol. 2002;118:73–78. doi: 10.1046/j.1523-1747.2002.01647.x. PubMed DOI

Slominski A, Tobin DJ, Paus R. Does p53 regulate skin pigmentation by controlling proopiomelanocortin gene transcription? Pigment Cell Res. 2007;20:307–308. doi: 10.1111/j.1600-0749.2007.00390.x. PubMed DOI

Krude H, et al. Severe early-onset obesity, adrenal insufficiency and red hair pigmentation caused by POMC mutations in humans. Nat. Genet. 1998;19:155–157. doi: 10.1038/509. PubMed DOI

Tsai HE, et al. Downregulation of hepatoma-derived growth factor contributes to retarded lung metastasis via inhibition of epithelial-mesenchymal transition by systemic POMC gene delivery in melanoma. Mol. Cancer Ther. 2013;12:1016–1025. doi: 10.1158/1535-7163.MCT-12-0832. PubMed DOI

Stovold R, et al. Neuroendocrine and epithelial phenotypes in small-cell lung cancer: implications for metastasis and survival in patients. Br. J. Cancer. 2013;108:1704–1711. doi: 10.1038/bjc.2013.112. PubMed DOI PMC

Meredith SL, et al. Irradiation decreases the neuroendocrine biomarker pro-opiomelanocortin in small cell lung cancer cells in vitro and in vivo. PLoS ONE. 2016;11:e0148404. doi: 10.1371/journal.pone.0148404. PubMed DOI PMC

Hao L, Zhao X, Zhang B, Li C, Wang C. Positive expression of pro-opiomelanocortin (POMC) is a novel independent poor prognostic marker in surgically resected non-small cell lung cancer. Tumour Biol. 2015;36:1811–1817. doi: 10.1007/s13277-014-2784-1. PubMed DOI

Derghal A, et al. Leptin modulates the expression of miRNAs-targeting POMC mRNA by the JAK2-STAT3 and PI3K-Akt pathways. J. Clin. Med. 2019;8:2213–2224. doi: 10.3390/jcm8122213. PubMed DOI PMC

Feighner SD, et al. Receptor for motilin identified in the human gastrointestinal system. Science. 1999;284:2184–2188. doi: 10.1126/science.284.5423.2184. PubMed DOI

Xu HL, et al. Variants in motilin, somatostatin and their receptor genes and risk of biliary tract cancers and stones in Shanghai, China. Meta Gene. 2014;2:418–426. doi: 10.1016/j.mgene.2014.04.012. PubMed DOI PMC

Misawa K, et al. Neuropeptide receptor genes GHSR and NMUR1 are candidate epigenetic biomarkers and predictors for surgically treated patients with oropharyngeal cancer. Sci. Rep. 2020;10:1007. doi: 10.1038/s41598-020-57920-z. PubMed DOI PMC

Delahaye-Sourdeix M, et al. A rare truncating BRCA2 variant and genetic susceptibility to upper aerodigestive tract cancer. J. Natl Cancer Inst. 2015;107:djv037. doi: 10.1093/jnci/djv037. PubMed DOI PMC

Cybulski C, et al. Constitutional CHEK2 mutations are associated with a decreased risk of lung and laryngeal cancers. Carcinogenesis. 2008;29:762–765. doi: 10.1093/carcin/bgn044. PubMed DOI

Brennan P, et al. Uncommon CHEK2 mis-sense variant and reduced risk of tobacco-related cancers: case control study. Hum. Mol. Genet. 2007;16:1794–1801. doi: 10.1093/hmg/ddm127. PubMed DOI

Shaag A, et al. Functional and genomic approaches reveal an ancient CHEK2 allele associated with breast cancer in the Ashkenazi Jewish population. Hum. Mol. Genet. 2005;14:555–563. doi: 10.1093/hmg/ddi052. PubMed DOI

Roeb W, Higgins J, King MC. Response to DNA damage of CHEK2 missense mutations in familial breast cancer. Hum. Mol. Genet. 2012;21:2738–2744. doi: 10.1093/hmg/dds101. PubMed DOI PMC

Kilpivaara O, et al. CHEK2 variant I157T may be associated with increased breast cancer risk. Int. J. Cancer. 2004;111:543–547. doi: 10.1002/ijc.20299. PubMed DOI

Apostolou P, Papasotiriou I. Current perspectives on CHEK2 mutations in breast cancer. Breast Cancer. 2017;9:331–335. PubMed PMC

Furic L, Maher-Laporte M, DesGroseillers L. A genome-wide approach identifies distinct but overlapping subsets of cellular mRNAs associated with Staufen1- and Staufen2-containing ribonucleoprotein complexes. RNA. 2008;14:324–335. doi: 10.1261/rna.720308. PubMed DOI PMC

Zhang X, et al. The downregulation of the RNA-binding protein Staufen2 in response to DNA damage promotes apoptosis. Nucleic Acids Res. 2016;44:3695–3712. doi: 10.1093/nar/gkw057. PubMed DOI PMC

Conde, L., Beaujois, R. & DesGroseillers, L. STAU2 protein level is controlled by caspases and the CHK1 pathway and regulates cell cycle progression in the non-transformed hTERT-RPE1 cells. Preprint from Research Square, 10.21203/rs.21203.rs-60003/v21201 PPR: PPR206819 (2020). PubMed PMC

Yuan J, et al. Integrated analysis of genetic ancestry and genomic alterations across cancers. Cancer Cell. 2018;34:549–560.e549. doi: 10.1016/j.ccell.2018.08.019. PubMed DOI PMC

Yang D, et al. Association of BRCA1 and BRCA2 mutations with survival, chemotherapy sensitivity, and gene mutator phenotype in patients with ovarian cancer. JAMA. 2011;306:1557–1565. doi: 10.1001/jama.2011.1456. PubMed DOI PMC

Cadoo KA. Understanding inherited risk in unselected newly diagnosed patients with endometrial cancer. JCO Precis. Oncol. 2019;3:473–474. PubMed PMC

O’Connor TD, et al. Fine-scale patterns of population stratification confound rare variant association tests. PLoS ONE. 2013;8:e65834. doi: 10.1371/journal.pone.0065834. PubMed DOI PMC

Lek M, et al. Analysis of protein-coding genetic variation in 60,706 humans. Nature. 2016;536:285–291. doi: 10.1038/nature19057. PubMed DOI PMC

Genomes Project C, et al. A global reference for human genetic variation. Nature. 2015;526:68–74. doi: 10.1038/nature15393. PubMed DOI PMC

Wang, Z., et al. Multi-omics analysis reveals a HIF network and Hub gene EPAS1 associated with lung adenocarcinoma. EBioMedicine, 93–101 (2018). PubMed PMC

Li Y, et al. FastPop: a rapid principal component derived method to infer intercontinental ancestry using genetic data. BMC Bioinform. 2016;17:122. doi: 10.1186/s12859-016-0965-1. PubMed DOI PMC

Bainbridge MN, et al. Targeted enrichment beyond the consensus coding DNA sequence exome reveals exons with higher variant densities. Genome Biol. 2011;12:R68. doi: 10.1186/gb-2011-12-7-r68. PubMed DOI PMC

Lupski JR, et al. Exome sequencing resolves apparent incidental findings and reveals further complexity of SH3TC2 variant alleles causing Charcot-Marie-Tooth neuropathy. Genome Med. 2013;5:57. doi: 10.1186/gm461. PubMed DOI PMC

Li B, Leal SM. Methods for detecting associations with rare variants for common diseases: application to analysis of sequence data. Am. J. Hum. Genet. 2008;83:311–321. doi: 10.1016/j.ajhg.2008.06.024. PubMed DOI PMC

Liu DJ, Leal SM. A novel adaptive method for the analysis of next-generation sequencing data to detect complex trait associations with rare variants due to gene main effects and interactions. PLoS Genet. 2010;6:e1001156. doi: 10.1371/journal.pgen.1001156. PubMed DOI PMC

Musolf AM, et al. Whole exome sequencing of highly aggregated lung cancer families reveals linked loci for increased cancer risk on chromosomes 12q, 7p, and 4q. Cancer Epidemiol. Biomark. Prev. 2020;29:434–442. doi: 10.1158/1055-9965.EPI-19-0887. PubMed DOI PMC

Liu P, et al. Familial aggregation of common sequence variants on 15q24-25.1 in lung cancer. J. Natl Cancer Inst. 2008;100:1326–1330. doi: 10.1093/jnci/djn268. PubMed DOI PMC

Regan EA, et al. Genetic epidemiology of COPD (COPDGene) study design. COPD. 2010;7:32–43. doi: 10.3109/15412550903499522. PubMed DOI PMC

Ji X, et al. Identification of susceptibility pathways for the role of chromosome 15q25.1 in modifying lung cancer risk. Nat. Commun. 2018;9:3221. doi: 10.1038/s41467-018-05074-y. PubMed DOI PMC

Li Y, et al. Genetic interaction analysis among oncogenesis-related genes revealed novel genes and networks in lung cancer development. Oncotarget. 2019;10:1760–1774. doi: 10.18632/oncotarget.26678. PubMed DOI PMC

Byun J, et al. Genome-wide association study of familial lung cancer. Carcinogenesis. 2018;39:1135–1140. doi: 10.1093/carcin/bgy080. PubMed DOI PMC

Kachuri L, et al. Fine mapping of chromosome 5p15.33 based on a targeted deep sequencing and high density genotyping identifies novel lung cancer susceptibility loci. Carcinogenesis. 2016;37:96–105. doi: 10.1093/carcin/bgv165. PubMed DOI PMC

Zuzarte PC, et al. A two-dimensional pooling strategy for rare variant detection on next-generation sequencing platforms. PLoS ONE. 2014;9:e93455. doi: 10.1371/journal.pone.0093455. PubMed DOI PMC

Matthews PM, Sudlow C. The UK Biobank. Brain. 2015;138:3463–3465. doi: 10.1093/brain/awv335. PubMed DOI

Bycroft C, et al. The UK Biobank resource with deep phenotyping and genomic data. Nature. 2018;562:203–209. doi: 10.1038/s41586-018-0579-z. PubMed DOI PMC

Singleton MV, et al. Phevor combines multiple biomedical ontologies for accurate identification of disease-causing alleles in single individuals and small nuclear families. Am. J. Hum. Genet. 2014;94:599–610. doi: 10.1016/j.ajhg.2014.03.010. PubMed DOI PMC

Szklarczyk D, et al. STRING v11: protein-protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets. Nucleic Acids Res. 2019;47:D607–D613. doi: 10.1093/nar/gky1131. PubMed DOI PMC

Kinner A, Wu W, Staudt C, Iliakis G. Gamma-H2AX in recognition and signaling of DNA double-strand breaks in the context of chromatin. Nucleic Acids Res. 2008;36:5678–5694. doi: 10.1093/nar/gkn550. PubMed DOI PMC

Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods. 2001;25:402–408. doi: 10.1006/meth.2001.1262. PubMed DOI

Liu, Y. Metadata record for the manuscript: rare deleterious germline variants and risk of lung cancer. figshare10.6084/m9.figshare.13280387 (2020).

Transdisciplinary Research Into Cancer of the Lung (TRICL) - Exome Plus Targeted Sequencing. dbGaPhttps://identifiers.org/dbgap:phs000878.v2.p1.

Oncoarray Consortium - Lung Cancer Studies. dbGaPhttps://identifiers.org/dbgap:phs001273.v1.p1.

Transdisciplinary Research Into Cancer of the Lung (TRICL) – Affymetrix. dbGaPhttps://identifiers.org/dbgap:phs001681.v1.p1.

Genetic Epidemiology of Lung Cancer Consortium GWAS of Familial Lung Cancer. dbGaPhttps://identifiers.org/dbgap:phs000629.v1.p1.

National Institutes of Health The Cancer Genome Atlas (TCGA). dbGaPhttps://identifiers.org/dbgap:phs000178.v9.p8.

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...