Identification of susceptibility pathways for the role of chromosome 15q25.1 in modifying lung cancer risk
Jazyk angličtina Země Velká Británie, Anglie Médium electronic
Typ dokumentu časopisecké články, Research Support, N.I.H., Extramural, práce podpořená grantem
Grantová podpora
P30 CA023108
NCI NIH HHS - United States
P30 CA076292
NCI NIH HHS - United States
U01 CA063464
NCI NIH HHS - United States
P50 CA070907
NCI NIH HHS - United States
R01 CA111703
NCI NIH HHS - United States
UM1 CA182876
NCI NIH HHS - United States
UL1 TR000117
NCATS NIH HHS - United States
P20 CA090578
NCI NIH HHS - United States
U19 CA148127
NCI NIH HHS - United States
P20 GM103534
NIGMS NIH HHS - United States
UL1 TR000445
NCATS NIH HHS - United States
R01 LM012012
NLM NIH HHS - United States
R01 CA092824
NCI NIH HHS - United States
R35 CA197449
NCI NIH HHS - United States
UM1 CA164973
NCI NIH HHS - United States
U01 CA167462
NCI NIH HHS - United States
U19 CA203654
NCI NIH HHS - United States
R01 CA144034
NCI NIH HHS - United States
P20 RR018787
NCRR NIH HHS - United States
S10 RR025141
NCRR NIH HHS - United States
R01 CA074386
NCI NIH HHS - United States
R01 CA176568
NCI NIH HHS - United States
K07 CA172294
NCI NIH HHS - United States
P50 CA119997
NCI NIH HHS - United States
G0902313
Medical Research Council - United Kingdom
R01 CA063464
NCI NIH HHS - United States
P01 CA033619
NCI NIH HHS - United States
R01 HL133786
NHLBI NIH HHS - United States
P30 CA177558
NCI NIH HHS - United States
P50 CA090578
NCI NIH HHS - United States
U01 HG004798
NHGRI NIH HHS - United States
R01 CA151989
NCI NIH HHS - United States
001
World Health Organization - International
202849/Z/16/Z
Wellcome Trust - United Kingdom
UM1 CA167462
NCI NIH HHS - United States
U01 CA164973
NCI NIH HHS - United States
PubMed
30104567
PubMed Central
PMC6089967
DOI
10.1038/s41467-018-05074-y
PII: 10.1038/s41467-018-05074-y
Knihovny.cz E-zdroje
- MeSH
- dítě MeSH
- dospělí MeSH
- genetická predispozice k nemoci * MeSH
- genová ontologie MeSH
- genové regulační sítě MeSH
- jednonukleotidový polymorfismus MeSH
- kohortové studie MeSH
- kojenec MeSH
- kouření škodlivé účinky MeSH
- lidé středního věku MeSH
- lidé MeSH
- lidské chromozomy, pár 15 genetika MeSH
- lokus kvantitativního znaku genetika MeSH
- mladiství MeSH
- mladý dospělý MeSH
- nádory plic genetika MeSH
- novorozenec MeSH
- předškolní dítě MeSH
- reprodukovatelnost výsledků MeSH
- rizikové faktory MeSH
- senioři MeSH
- Check Tag
- dítě MeSH
- dospělí MeSH
- kojenec MeSH
- lidé středního věku MeSH
- lidé MeSH
- mladiství MeSH
- mladý dospělý MeSH
- mužské pohlaví MeSH
- novorozenec MeSH
- předškolní dítě MeSH
- senioři MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Research Support, N.I.H., Extramural MeSH
Genome-wide association studies (GWAS) identified the chromosome 15q25.1 locus as a leading susceptibility region for lung cancer. However, the pathogenic pathways, through which susceptibility SNPs within chromosome 15q25.1 affects lung cancer risk, have not been explored. We analyzed three cohorts with GWAS data consisting 42,901 individuals and lung expression quantitative trait loci (eQTL) data on 409 individuals to identify and validate the underlying pathways and to investigate the combined effect of genes from the identified susceptibility pathways. The KEGG neuroactive ligand receptor interaction pathway, two Reactome pathways, and 22 Gene Ontology terms were identified and replicated to be significantly associated with lung cancer risk, with P values less than 0.05 and FDR less than 0.1. Functional annotation of eQTL analysis results showed that the neuroactive ligand receptor interaction pathway and gated channel activity were involved in lung cancer risk. These pathways provide important insights for the etiology of lung cancer.
1st Faculty of Medicine Charles University Kateřinská 32 Prague 121 08 Praha 2 Czech Republic
American Cancer Society Inc Atlanta 30303 GA USA
Annenberg School of Communication University of Pennsylvania Philadelphia 19104 PA USA
Biomedical Data Science Geisel School of Medicine at Dartmouth Hanover 03750 NH USA
British Columbia Cancer Agency 675 West 10th Avenue Vancouver V5Z1L3 Canada
Cancer Cluster Salzburg University of Salzburg Salzburg 5020 Austria
Cancer Registry and Histopathology Department Civic M P Arezzo Hospital ASP Ragusa 97100 Italy
Clalit National Cancer Control Center Carmel Medical Center Haifa 34361 Israel
Department of Biomedical Informatics School of Medicine Vanderbilt University Nashville TN 37235 USA
Department of Clinical Science University of Bergen Bergen 5021 Norway
Department of Clinical Sciences and Community Health University of Milan Milan 20133 Italy
Department of Environmental Epidemiology Nofer Institute of Occupational Medicine Lodz 91 348 Poland
Department of Environmental Health Harvard School of Public Health Boston 02115 MA USA
Department of Epidemiology Geisel School of Medicine 1 Medical Center Drive Hanover 03755 NH USA
Department of Epidemiology Shanghai Cancer Institute Shanghai 2200 China
Department of Epidemiology The University of Texas MD Anderson Cancer Center Houston 77030 TX USA
Department of Genetics and Pharmacogenomics Merck Research Laboratories Boston 02115 5727 MA USA
Department of Medical Biosciences Umeå University Umeå 901 85 Sweden
Department of Medicine Massachusetts General Hospital Boston 02115 MA USA
Department of Molecular Medicine Laval University Québec G1V 4G5 Canada
Department of Oncology and Metabolism University of Sheffield Sheffield S10 2RX UK
Department of Pathology Lund University Lund 222 41 Sweden
Department of Pharmacology and Toxicology University of Toronto Toronto M5S 1A8 ON Canada
Department of Psychiatry University of Toronto Toronto M5T 1R8 ON Canada
Department of Radiation Sciences Umeå University Umeå 901 85 Sweden
Duke NUS Medical School Singapore 119077 Singapore
Epidemiology Program University of Hawaii Cancer Center Honolulu 96813 HI USA
Faculty of Health and Medical Sciences University of Copenhagen Copenhagen 2200 København N Denmark
Faculty of Medicine Lund University Lund 22100 Sweden
Faculty of Medicine Technion Haifa 34361 Israel
Faculty of Medicine University of Oviedo Oviedo 33006 Spain
Fred Hutchinson Cancer Research Center Seattle 98109 1024 WA USA
Hellenic Health Foundation Athens GR 115 27 Greece
Institut universitaire de cardiologie et de pneumologie de Québec Québec G1V 4G5 Canada
Institute of Pneumology Marius Nasta Bucharest RO 050159 Romania
International Agency for Research on Cancer World Health Organization Lyon 69372 CEDEX 08 France
International Organization for Cancer Prevention and Research Belgrade 11070 Serbia
Markey Cancer Center University of Kentucky 1st Floor 800 Rose Street Lexington 40508 KY USA
National Institute of Occupational Health 0033 Gydas vei 8 0033 Oslo Norway
Perelman School of Medicine University of Pennsylvania Philadelphia 19104 PA USA
Princess Margaret Cancer Centre Toronto M5G2M9 Canada
Public Health Ontario Windsor Ontario N8W 5K5 Canada
Public Health Sciences Division Fred Hutchinson Cancer Research Center Seattle 98109 WA USA
Saw Swee Hock School of Public Health National University of Singapore Singapore 117549 Singapore
School of Health and Related Research University of Sheffield Sheffield S1 4DA UK
School of Public Health St Mary's Campus Imperial College London London W2 1PG UK
Swedish Medical Group Arnold Pavilion Suite 200 Seattle 98104 WA USA
The Institute of Cancer Research London SW7 3RP England UK
Thoraxklinik at University Hospital Heidelberg Heidelberg 69126 Germany
Translational Lung Research Center Heidelberg Heidelberg 69120 Germany
Unit of Nutrition and Cancer Catalan Institute of Oncology Barcelona 08908 Spain
University of Pittsburgh Cancer Institute Pittsburgh 15232 PA USA
Zobrazit více v PubMed
Siegel R, Ward E, Brawley O, Jemal A. Cancer statistics, 2011: the impact of eliminating socioeconomic and racial disparities on premature cancer deaths. CA Cancer J. Clin. 2011;61:212–236. doi: 10.3322/caac.20121. PubMed DOI
Amos CI, et al. Genome-wide association scan of tag SNPs identifies a susceptibility locus for lung cancer at 15q25.1. Nat. Genet. 2008;40:616–622. doi: 10.1038/ng.109. PubMed DOI PMC
Hung RJ, et al. A susceptibility locus for lung cancer maps to nicotinic acetylcholine receptor subunit genes on 15q25. Nature. 2008;452:633–637. doi: 10.1038/nature06885. PubMed DOI
Thorgeirsson TE, et al. A variant associated with nicotine dependence, lung cancer and peripheral arterial disease. Nature. 2008;452:638–642. doi: 10.1038/nature06846. PubMed DOI PMC
Liu JZ, et al. Meta-analysis and imputation refines the association of 15q25 with smoking quantity. Nat. Genet. 2010;42:436–440. doi: 10.1038/ng.572. PubMed DOI PMC
Tobacco and Genetics Consortium. Genome-wide meta-analyses identify multiple loci associated with smoking behavior. Nat. Genet.42, 441–447 (2010). PubMed PMC
Walsh KM, et al. Fine-mapping of the 5p15.33, 6p22.1-p21.31, and 15q25.1 regions identifies functional and histology-specific lung cancer susceptibility loci in African-Americans. Cancer Epidemiol. Biomarkers Prev. 2013;22:251–260. doi: 10.1158/1055-9965.EPI-12-1007-T. PubMed DOI PMC
Chen LS, et al. Smoking and genetic risk variation across populations of European, Asian, and African American ancestry—a meta-analysis of chromosome 15q25. Genet. Epidemiol. 2012;36:340–351. doi: 10.1002/gepi.21627. PubMed DOI PMC
Paliwal A, et al. Aberrant DNA methylation links cancer susceptibility locus 15q25.1 to apoptotic regulation and lung cancer. Cancer Res. 2010;70:2779–2788. doi: 10.1158/0008-5472.CAN-09-4550. PubMed DOI PMC
Nguyen JD, et al. Susceptibility loci for lung cancer are associated with mRNA levels of nearby genes in the lung. Carcinogenesis. 2014;35:2653–2659. doi: 10.1093/carcin/bgu184. PubMed DOI PMC
Ji X, et al. The role of haplotype in 15q25.1 locus in lung cancer risk: results of scanning chromosome 15. Carcinogenesis. 2015;36:1275–1283. doi: 10.1093/carcin/bgv118. PubMed DOI PMC
Fellay J, et al. Common genetic variation and the control of HIV-1 in humans. PLoS Genet. 2009;5:e1000791. doi: 10.1371/journal.pgen.1000791. PubMed DOI PMC
Zhang K, Cui S, Chang S, Zhang L, Wang J. i-GSEA4GWAS: a web server for identification of pathways/gene sets associated with traits by applying an improved gene set enrichment analysis to genome-wide association study. Nucleic Acids Res. 2010;38:W90–W95. doi: 10.1093/nar/gkq324. PubMed DOI PMC
Kwon JS, Kim J, Nam D, Kim S. Performance comparison of two gene set analysis methods for genome-wide association study results: GSA-SNP vs i-GSEA4GWAS. Genomics Inform. 2012;10:5. PubMed PMC
Nam D, Kim J, Kim SY, Kim S. GSA-SNP: a general approach for gene set analysis of polymorphisms. Nucleic Acids Res. 2010;38:6. doi: 10.1093/nar/gkq428. PubMed DOI PMC
George AA, et al. Function of human α3β4α5 nicotinic acetylcholine receptors is reduced by the α5(D398N) variant. J. Biol. Chem. 2012;287:25151–25162. doi: 10.1074/jbc.M112.379339. PubMed DOI PMC
Amos CI, et al. Nicotinic acetylcholine receptor region on chromosome 15q25 and lung cancer risk among African Americans: a case-control study. J. Natl. Cancer Inst. 2010;102:1199–1205. doi: 10.1093/jnci/djq232. PubMed DOI PMC
Wu C, et al. Genetic variants on chromosome 15q25 associated with lung cancer risk in Chinese populations. Cancer Res. 2009;69:5065–5072. doi: 10.1158/0008-5472.CAN-09-0081. PubMed DOI
Koster R, et al. Pathway-based analysis of GWAs data identifies association of sex determination genes with susceptibility to testicular germ cell tumors. Hum. Mol. Genet. 2014;23:6061–6068. doi: 10.1093/hmg/ddu305. PubMed DOI PMC
Truong T, et al. Replication of lung cancer susceptibility loci at chromosomes 15q25, 5p15, and 6p21: a pooled analysis from the International Lung Cancer Consortium. J. Natl. Cancer Inst. 2010;102:959–971. doi: 10.1093/jnci/djq178. PubMed DOI PMC
Jaworowska E, et al. Smoking related cancers and loci at chromosomes 15q25, 5p15, 6p22.1 and 6p21.33 in the Polish population. PLoS One. 2011;6:e25057. doi: 10.1371/journal.pone.0025057. PubMed DOI PMC
Makinen VP, et al. Integrative genomics reveals novel molecular pathways and gene networks for coronary artery disease. PLoS Genet. 2014;10:e1004502. doi: 10.1371/journal.pgen.1004502. PubMed DOI PMC
Parkes M, Cortes A, van Heel DA, Brown MA. Genetic insights into common pathways and complex relationships among immune-mediated diseases. Nat. Rev. Genet. 2013;14:661–673. doi: 10.1038/nrg3502. PubMed DOI
Bunyavanich S, et al. Integrated genome-wide association, coexpression network, and expression single nucleotide polymorphism analysis identifies novel pathway in allergic rhinitis. BMC Med. Genomics. 2014;7:48. doi: 10.1186/1755-8794-7-48. PubMed DOI PMC
Shungin D, et al. New genetic loci link adipose and insulin biology to body fat distribution. Nature. 2015;518:187–196. doi: 10.1038/nature14132. PubMed DOI PMC
Adkins DE, et al. SNP-based analysis of neuroactive ligand–receptor interaction pathways implicates PGE2 as a novel mediator of antipsychotic treatment response: data from the CATIE study. Schizophr. Res. 2012;135:200–201. doi: 10.1016/j.schres.2011.11.002. PubMed DOI PMC
Ren C, et al. CRISPR/Cas9-mediated efficient targeted mutagenesis in Chardonnay (Vitis vinifera L.) Sci. Rep. 2016;6:32289. doi: 10.1038/srep32289. PubMed DOI PMC
Mundt E, Bates MD. Genetics of Hirschsprung disease and anorectal malformations. Semin. Pediatr. Surg. 2010;19:107–117. doi: 10.1053/j.sempedsurg.2009.11.015. PubMed DOI
Puri P, Shinkai T. Pathogenesis of Hirschsprung’s disease and its variants: recent progress. Semin. Pediatr. Surg. 2004;13:18–24. doi: 10.1053/j.sempedsurg.2003.09.004. PubMed DOI
Chen, W. J. et al. Implication of downregulation and prospective pathway signaling of microRNA-375 in lung squamous cell carcinoma. Pathol. Res. Pract. 213, 364–372 (2017). PubMed
Wu X, Zang W, Cui S, Wang M. Bioinformatics analysis of two microarray gene-expression data sets to select lung adenocarcinoma marker genes. Eur. Rev. Med. Pharmacol. Sci. 2012;16:1582–1587. PubMed
Lassi G, et al. The CHRNA5-A3-B4 gene cluster and smoking: from discovery to therapeutics. Trends Neurosci. 2016;39:851–861. doi: 10.1016/j.tins.2016.10.005. PubMed DOI PMC
Li MD, et al. Association and interaction analyses of GABBR1 and GABBR2 with nicotine dependence in European- and African-American populations. PLoS One. 2009;4:e7055. doi: 10.1371/journal.pone.0007055. PubMed DOI PMC
Begum F, et al. Hemizygous deletion on chromosome 3p26.1 is associated with heavy smoking among African American subjects in the COPD gene study. PLoS One. 2016;11:e0164134. doi: 10.1371/journal.pone.0164134. PubMed DOI PMC
Vink JM, et al. Genome-wide association study of smoking initiation and current smoking. Am. J. Hum. Genet. 2009;84:367–379. doi: 10.1016/j.ajhg.2009.02.001. PubMed DOI PMC
Saccone NL, et al. Multiple distinct risk loci for nicotine dependence identified by dense coverage of the complete family of nicotinic receptor subunit (CHRN) genes. Am. J. Med. Genet. B, Neuropsychiatr. Genet. 2009;150B:453–466. doi: 10.1002/ajmg.b.30828. PubMed DOI PMC
Biernacka JM, et al. Genome-wide gene-set analysis for identification of pathways associated with alcohol dependence. Int. J. Neuropsychopharmacol. 2013;16:271–278. doi: 10.1017/S1461145712000375. PubMed DOI PMC
Kong Y, et al. High throughput sequencing identifies microRNAs mediating alpha-synuclein toxicity by targeting neuroactive-ligand receptor interaction pathway in early stage of Drosophila Parkinson’s disease model. PLoS One. 2015;10:e0137432. doi: 10.1371/journal.pone.0137432. PubMed DOI PMC
Putnam DK, Sun J, Zhao Z. Exploring schizophrenia drug–gene interactions through molecular network and pathway modeling. AMIA Annu. Symp. Proc. 2011;2011:1127–1133. PubMed PMC
Wen Y, Alshikho MJ, Herbert MR. Pathway network analyses for autism reveal multisystem involvement, major overlaps with other diseases and convergence upon MAPK and calcium signaling. PLoS One. 2016;11:e0153329. doi: 10.1371/journal.pone.0153329. PubMed DOI PMC
Lee JM, Davis FM, Roberts-Thomson SJ, Monteith GR. Ion channels and transporters in cancer. 4. Remodeling of Ca(2+) signaling in tumorigenesis: role of Ca(2+) transport. Am. J. Physiol. Cell Physiol. 2011;301:C969–C976. doi: 10.1152/ajpcell.00136.2011. PubMed DOI
Prevarskaya N, Skryma R, Shuba Y. Targeting Ca(2)(+) transport in cancer: close reality or long perspective? Expert Opin. Ther. Targets. 2013;17:225–241. doi: 10.1517/14728222.2013.741594. PubMed DOI
Deliot N, Constantin B. Plasma membrane calcium channels in cancer: alterations and consequences for cell proliferation and migration. Biochim. Biophys. Acta. 2015;1848:2512–2522. doi: 10.1016/j.bbamem.2015.06.009. PubMed DOI
Kim YS, Kim Y, Choi JW, Oh HE, Lee JH. Genetic variants and risk of prostate cancer using pathway analysis of a genome-wide association study. Neoplasma. 2016;63:629–634. doi: 10.4149/neo_2016_418. PubMed DOI
Tomoshige K, et al. Germline mutations causing familial lung cancer. J. Hum. Genet. 2015;60:597–603. doi: 10.1038/jhg.2015.75. PubMed DOI
Frullanti E, et al. Association of lung adenocarcinoma clinical stage with gene expression pattern in noninvolved lung tissue. Int. J. Cancer. 2012;131:E643–E648. doi: 10.1002/ijc.27426. PubMed DOI
Lee J, Katzenmaier EM, Kopitz J, Gebert J. Reconstitution of TGFBR2 in HCT116 colorectal cancer cells causes increased LFNG expression and enhanced N-acetyl-d-glucosamine incorporation into Notch1. Cell Signal. 2016;28:1105–1113. doi: 10.1016/j.cellsig.2016.04.012. PubMed DOI
Cheung AK, et al. PTPRG suppresses tumor growth and invasion via inhibition of Akt signaling in nasopharyngeal carcinoma. Oncotarget. 2015;6:13434–13447. doi: 10.18632/oncotarget.3876. PubMed DOI PMC
Englinger, B. et al. Acquired nintedanib resistance in FGFR1-driven small cell lung cancer: role of endothelin-A receptor-activated ABCB1 expression. Oncotarget. 7, 50161–50179 (2016). PubMed PMC
Cui Y, et al. OPCML is a broad tumor suppressor for multiple carcinomas and lymphomas with frequently epigenetic inactivation. PLoS One. 2008;3:e2990. doi: 10.1371/journal.pone.0002990. PubMed DOI PMC
Anglim PP, et al. Identification of a panel of sensitive and specific DNA methylation markers for squamous cell lung cancer. Mol. Cancer. 2008;7:62. doi: 10.1186/1476-4598-7-62. PubMed DOI PMC
Gentile A, Lazzari L, Benvenuti S, Trusolino L, Comoglio PM. Ror1 is a pseudokinase that is crucial for Met-driven tumorigenesis. Cancer Res. 2011;71:3132–3141. doi: 10.1158/0008-5472.CAN-10-2662. PubMed DOI
Yamaguchi T, et al. NKX2-1/TITF1/TTF-1-induced ROR1 is required to sustain EGFR survival signaling in lung adenocarcinoma. Cancer Cell. 2012;21:348–361. doi: 10.1016/j.ccr.2012.02.008. PubMed DOI
Landi MT, et al. Environment And Genetics in Lung cancer Etiology (EAGLE) study: an integrative population-based case-control study of lung cancer. BMC Public Health. 2008;8:203. doi: 10.1186/1471-2458-8-203. PubMed DOI PMC
Wang Y, et al. Rare variants of large effect in BRCA2 and CHEK2 affect risk of lung cancer. Nat. Genet. 2014;46:736–741. doi: 10.1038/ng.3002. PubMed DOI PMC
McKay, J. et al. Large-scale association analysis identifies new lung cancer susceptibility loci and heterogeneity in genetic susceptibility across histological subtypes. Nat. Genet. 49, 1126–1132 (2017). PubMed PMC
Bosse Y, et al. Molecular signature of smoking in human lung tissues. Cancer Res. 2012;72:3753–3763. doi: 10.1158/0008-5472.CAN-12-1160. PubMed DOI
Howie BN, Donnelly P, Marchini J. A flexible and accurate genotype imputation method for the next generation of genome-wide association studies. PLoS Genet. 2009;5:e1000529. doi: 10.1371/journal.pgen.1000529. PubMed DOI PMC
Ogata H, et al. KEGG: Kyoto Encyclopedia of Genes and Genomes. Nucleic Acids Res. 1999;27:29–34. doi: 10.1093/nar/27.1.29. PubMed DOI PMC
Gene Ontology Consortium. The Gene Ontology (GO) project in 2006. Nucleic Acids Res.34, D322–D326 (2006). PubMed PMC
Subramanian A, et al. Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc. Natl. Acad. Sci. U.S.A. 2005;102:15545–15550. doi: 10.1073/pnas.0506580102. PubMed DOI PMC
Wang K, Li M, Bucan M. Pathway-based approaches for analysis of genomewide association studies. Am. J. Hum. Genet. 2007;81:1278–1283. doi: 10.1086/522374. PubMed DOI PMC
Irizarry RA, et al. Exploration, normalization, and summaries of high density oligonucleotide array probe level data. Biostatistics. 2003;4:249–264. doi: 10.1093/biostatistics/4.2.249. PubMed DOI
Heber S, Sick B. Quality assessment of Affymetrix GeneChip data. OMICS. 2006;10:358–368. doi: 10.1089/omi.2006.10.358. PubMed DOI
da Huang W, Sherman BT, Lempicki RA. Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat. Protoc. 2009;4:44–57. doi: 10.1038/nprot.2008.211. PubMed DOI
Rare deleterious germline variants and risk of lung cancer
Protein-altering germline mutations implicate novel genes related to lung cancer development