Rare Variants in Known Susceptibility Loci and Their Contribution to Risk of Lung Cancer
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články, Research Support, N.I.H., Extramural, Research Support, N.I.H., Intramural, práce podpořená grantem
Grantová podpora
R01 CA060691
NCI NIH HHS - United States
T42 OH008416
NIOSH CDC HHS - United States
U19 CA203654
NCI NIH HHS - United States
R01 HL110883
NHLBI NIH HHS - United States
K07 CA181480
NCI NIH HHS - United States
R01 CA080127
NCI NIH HHS - United States
R01 CA141769
NCI NIH HHS - United States
P30 ES006096
NIEHS NIH HHS - United States
P30 CA125123
NCI NIH HHS - United States
P50 CA090578
NCI NIH HHS - United States
P30 CA022453
NCI NIH HHS - United States
K01 HL129039
NHLBI NIH HHS - United States
HHSN261201300011C
NCI NIH HHS - United States
R01 CA134682
NCI NIH HHS - United States
R01 CA134433
NCI NIH HHS - United States
R01 HL113264
NHLBI NIH HHS - United States
R01 HL082487
NHLBI NIH HHS - United States
R01 HL089897
NHLBI NIH HHS - United States
U19 CA148127
NCI NIH HHS - United States
P20 GM103534
NIGMS NIH HHS - United States
R01 CA092824
NCI NIH HHS - United States
R01 CA087895
NCI NIH HHS - United States
R35 CA197449
NCI NIH HHS - United States
R01 CA084354
NCI NIH HHS - United States
R24 ES028527
NIEHS NIH HHS - United States
R01 CA127219
NCI NIH HHS - United States
R01 CA074386
NCI NIH HHS - United States
R01 HL089856
NHLBI NIH HHS - United States
U01 CA076293
NCI NIH HHS - United States
P30 CA023108
NCI NIH HHS - United States
U01 HL089856
NHLBI NIH HHS - United States
HHSN268201200007C
NHLBI NIH HHS - United States
N01HG65404
NHGRI NIH HHS - United States
R03 CA077118
NCI NIH HHS - United States
001
World Health Organization - International
PubMed
29981437
PubMed Central
PMC6366341
DOI
10.1016/j.jtho.2018.06.016
PII: S1556-0864(18)30767-6
Knihovny.cz E-zdroje
- Klíčová slova
- Exome sequencing, Lung cancer, Rare variants, Susceptibility loci,
- MeSH
- celogenomová asociační studie metody MeSH
- dospělí MeSH
- genetická variace genetika MeSH
- lidé středního věku MeSH
- lidé MeSH
- nádory plic genetika patologie MeSH
- rizikové faktory MeSH
- senioři nad 80 let MeSH
- senioři MeSH
- Check Tag
- dospělí MeSH
- lidé středního věku MeSH
- lidé MeSH
- mužské pohlaví MeSH
- senioři nad 80 let MeSH
- senioři MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Research Support, N.I.H., Extramural MeSH
- Research Support, N.I.H., Intramural MeSH
BACKGROUND: Genome-wide association studies are widely used to map genomic regions contributing to lung cancer (LC) susceptibility, but they typically do not identify the precise disease-causing genes/variants. To unveil the inherited genetic variants that cause LC, we performed focused exome-sequencing analyses on genes located in 121 genome-wide association study-identified loci previously implicated in the risk of LC, chronic obstructive pulmonary disease, pulmonary function level, and smoking behavior. METHODS: Germline DNA from 260 case patients with LC and 318 controls were sequenced by utilizing VCRome 2.1 exome capture. Filtering was based on enrichment of rare and potential deleterious variants in cases (risk alleles) or controls (protective alleles). Allelic association analyses of single-variant and gene-based burden tests of multiple variants were performed. Promising candidates were tested in two independent validation studies with a total of 1773 case patients and 1123 controls. RESULTS: We identified 48 rare variants with deleterious effects in the discovery analysis and validated 12 of the 43 candidates that were covered in the validation platforms. The top validated candidates included one well-established truncating variant, namely, BRCA2, DNA repair associated gene (BRCA2) K3326X (OR = 2.36, 95% confidence interval [CI]: 1.38-3.99), and three newly identified variations, namely, lymphotoxin beta gene (LTB) p.Leu87Phe (OR = 7.52, 95% CI: 1.01-16.56), prolyl 3-hydroxylase 2 gene (P3H2) p.Gln185His (OR = 5.39, 95% CI: 0.75-15.43), and dishevelled associated activator of morphogenesis 2 gene (DAAM2) p.Asp762Gly (OR = 0.25, 95% CI: 0.10-0.79). Burden tests revealed strong associations between zinc finger protein 93 gene (ZNF93), DAAM2, bromodomain containing 9 gene (BRD9), and the gene LTB and LC susceptibility. CONCLUSION: Our results extend the catalogue of regions associated with LC and highlight the importance of germline rare coding variants in LC susceptibility.
Department of Pediatrics Baylor College of Medicine Houston Texas
Department of Public Health Sciences Henry Ford health System Detroit Michigan
Faculty of Health Sciences Palacky University Olomouc Czech Republic
Harvard University School of Public Health Boston Massachusetts
International Agency for Research on Cancer Lyon France
International Organization for Cancer Prevention and Research Belgrade Serbia
Karmanos Cancer Institute Wayne State University Detroit Michigan
Louisiana State University Health Sciences Center New Orleans Louisiana
Lunenfeld Tanenbaum Research Institute Sinai Health System Toronto Ontario Canada
Maria Sklodowska Curie Institute of Oncology Center Warsaw Poland
Mayo Clinic College of Medicine Rochester Minnesota
Medical College of Wisconsin Milwaukee Wisconsin
National Human Genome Research Institute Bethesda Maryland
National Institute of Public Health Bucharest Romania
Nofer Institute of Occupational Medicine Department of Environmental Epidemiology Lodz Poland
Princess Margaret Cancer Center Toronto Ontario Canada
Russian N N Blokhin Cancer Research Centre Moscow Russian Federation
The University of Toledo College of Medicine Toledo Ohio
University of Cincinnati College of Medicine Cincinnati Ohio
Zobrazit více v PubMed
Bosse Y, Amos CI. A Decade of GWAS Results in Lung Cancer. Cancer Epidemiol Biomarkers Prev. 2018;27(4):363–379. PubMed PMC
Gorlov IP, Gorlova OY, Sunyaev SR, Spitz MR, Amos CI. Shifting paradigm of association studies: value of rare single-nucleotide polymorphisms. Am J Hum Genet. 2008;82(1):100–112. PubMed PMC
Xiong D, Wang Y, Kupert E, et al. A recurrent mutation in PARK2 is associated with familial lung cancer. Am J Hum Genet. 2015;96(2):301–308. PubMed PMC
Wang Y, McKay JD, Rafnar T, et al. Rare variants of large effect in BRCA2 and CHEK2 affect risk of lung cancer. Nat Genet. 2014;46(7):736–741. PubMed PMC
Liu Y, Kheradmand F, Davis CF, et al. Focused Analysis of Exome Sequencing Data for Rare Germline Mutations in Familial and Sporadic Lung Cancer. J Thorac Oncol. 2016;11(1):52–61. PubMed PMC
Lee SH, Goswami S, Grudo A, et al. Antielastin autoimmunity in tobacco smoking-induced emphysema. Nature medicine. 2007;13(5):567–569. PubMed
Grumelli S, Corry DB, Song LZ, et al. An immune basis for lung parenchymal destruction in chronic obstructive pulmonary disease and emphysema. PLoS medicine. 2004;1(1):e8. PubMed PMC
Shan M, Cheng HF, Song LZ, et al. Lung myeloid dendritic cells coordinately induce TH1 and TH17 responses in human emphysema. Science translational medicine. 2009;1(4):4ra10. PubMed
Liu P, Vikis HG, Wang D, et al. Familial aggregation of common sequence variants on 15q24-25.1 in lung cancer. Journal of the National Cancer Institute. 2008;100(18):1326–1330. PubMed PMC
Regan EA, Hokanson JE, Murphy JR, et al. Genetic epidemiology of COPD (COPDGene) study design. COPD. 2010;7(1):32–43. PubMed PMC
Bainbridge MN, Wang M, Wu Y, et al. Targeted enrichment beyond the consensus coding DNA sequence exome reveals exons with higher variant densities. Genome Biol. 2011;12(7):R68. PubMed PMC
Lupski JR, Gonzaga-Jauregui C, Yang Y, et al. Exome sequencing resolves apparent incidental findings and reveals further complexity of SH3TC2 variant alleles causing Charcot-Marie-Tooth neuropathy. Genome medicine. 2013;5(6):57. PubMed PMC
Reid JG, Carroll A, Veeraraghavan N, et al. Launching genomics into the cloud: deployment of Mercury, a next generation sequence analysis pipeline. BMC bioinformatics. 2014;15:30. PubMed PMC
Li H, Durbin R. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics. 2009;25(14):1754–1760. PubMed PMC
Challis D, Yu J, Evani US, et al. An integrative variant analysis suite for whole exome next-generation sequencing data. BMC bioinformatics. 2012;13:8. PubMed PMC
Kircher M, Witten DM, Jain P, O’Roak BJ, Cooper GM, Shendure J. A general framework for estimating the relative pathogenicity of human genetic variants. Nature genetics. 2014;46(3):310–315. PubMed PMC
Li B, Leal SM. Methods for detecting associations with rare variants for common diseases: application to analysis of sequence data. Am J Hum Genet. 2008;83(3):311–321. PubMed PMC
Liu DJ, Leal SM. A novel adaptive method for the analysis of next-generation sequencing data to detect complex trait associations with rare variants due to gene main effects and interactions. PLoS Genet. 2010;6(10):e1001156. PubMed PMC
Benjamini Y, Hochberg Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing. J Royal Stat Soc Ser B. 1995;57(1):289–300.
Schwartz AG, Lusk CM, Wenzlaff AS, et al. Risk of Lung Cancer Associated with COPD Phenotype Based on Quantitative Image Analysis. Cancer Epidemiol Biomarkers Prev. 2016;25(9):1341–1347. PubMed PMC
Wray NR. Allele frequencies and the r2 measure of linkage disequilibrium: impact on design and interpretation of association studies. Twin Res Hum Genet. 2005;8(2):87–94. PubMed
Lopez de Maturana E, Ibanez-Escriche N, Gonzalez-Recio O, et al. Next generation modeling in GWAS: comparing different genetic architectures. Hum Genet. 2014;133(10):1235–1253. PubMed
de Los Campos G, Sorensen D, Gianola D. Genomic heritability: what is it? PLoS Genet. 2015;11(5):e1005048. PubMed PMC
Wang Y, McKay JD, Rafnar T, et al. Rare variants of large effect in BRCA2 and CHEK2 affect risk of lung cancer. Nature genetics. 2014;46(7):736–741. PubMed PMC
Delahaye-Sourdeix M, Anantharaman D, Timofeeva MN, et al. A rare truncating BRCA2 variant and genetic susceptibility to upper aerodigestive tract cancer. Journal of the National Cancer Institute. 2015. PubMed PMC
Michailidou K, Hall P, Gonzalez-Neira A, et al. Large-scale genotyping identifies 41 new loci associated with breast cancer risk. Nature genetics. 2013;45(4):353–361, PubMed PMC
Meeks HD, Song H, Michailidou K, et al. BRCA2 Polymorphic Stop Codon K3326X and the Risk of Breast, Prostate, and Ovarian Cancers. J Natl Cancer Inst. 2016;108(2). PubMed PMC
Morimatsu M, Donoho G, Hasty P. Cells deleted for Brca2 COOH terminus exhibit hypersensitivity to gamma-radiation and premature senescence. Cancer research. 1998;58(15):3441–3447. PubMed
Atanassov BS, Barrett JC, Davis BJ. Homozygous germ line mutation in exon 27 of murine Brca2 disrupts the Fancd2-Brca2 pathway in the homologous recombination-mediated DNA interstrand cross-links’ repair but does not affect meiosis. Genes, chromosomes & cancer. 2005;44(4):429–437. PubMed
Wang X, Andreassen PR, D’Andrea AD. Functional interaction of monoubiquitinated FANCD2 and BRCA2/FANCD1 in chromatin. Molecular and cellular biology. 2004;24(13):5850–5862. PubMed PMC
McAllister KA, Bennett LM, Houle CD, et al. Cancer susceptibility of mice with a homozygous deletion in the COOH-terminal domain of the Brca2 gene. Cancer research. 2002;62(4):990–994. PubMed
Audeh MW, Carmichael J, Penson RT, et al. Oral poly(ADP-ribose) polymerase inhibitor olaparib in patients with BRCA1 or BRCA2 mutations and recurrent ovarian cancer: a proof-of-concept trial. Lancet. 2010;376(9737):245–251. PubMed
Fong PC, Yap TA, Boss DS, et al. Poly(ADP)-ribose polymerase inhibition: frequent durable responses in BRCA carrier ovarian cancer correlating with platinum-free interval. J Clin Oncol. 2010;28(15):2512–2519. PubMed
Ledermann JA, Harter P, Gourley C, et al. Overall survival in patients with platinum-sensitive recurrent serous ovarian cancer receiving olaparib maintenance monotherapy: an updated analysis from a randomised, placebo-controlled, double-blind, phase 2 trial. Lancet Oncol. 2016;17(11):1579–1589. PubMed
Repapi E, Sayers I, Wain LV, et al. Genome-wide association study identifies five loci associated with lung function. Nat Genet. 2010;42(1):36–44. PubMed PMC
Wang Y, Broderick P, Webb E, et al. Common 5p15.33 and 6p21.33 variants influence lung cancer risk. Nature genetics. 2008;40(12):1407–1409. PubMed PMC
Broderick P, Wang Y, Vijayakrishnan J, et al. Deciphering the impact of common genetic variation on lung cancer risk: a genome-wide association study. Cancer Res. 2009;69(16):6633–6641. PubMed PMC
Hancock DB, Eijgelsheim M, Wilk JB, et al. Meta-analyses of genome-wide association studies identify multiple loci associated with pulmonary function. Nat Genet. 2010;42(1):45–52. PubMed PMC
Drutskaya MS, Efimov GA, Kruglov AA, Kuprash DV, Nedospasov SA. Tumor necrosis factor, lymphotoxin and cancer. IUBMB Life. 2010;62(4):283–289. PubMed
Aggarwal BB. Signalling pathways of the TNF superfamily: a double-edged sword. Nat Rev Immunol. 2003;3(9):745–756. PubMed
Uhl GR, Liu QR, Drgon T, et al. Molecular genetics of successful smoking cessation: convergent genome-wide association study results. Arch Gen Psychiatry. 2008;65(6):683–693. PubMed PMC
Hirata H, Hinoda Y, Nakajima K, et al. Wnt antagonist gene polymorphisms and renal cancer. Cancer. 2009;115(19):4488–4503. PubMed PMC
Meda SA, Ruano G, Windemuth A, et al. Multivariate analysis reveals genetic associations of the resting default mode network in psychotic bipolar disorder and schizophrenia. Proc Natl Acad Sci U S A. 2014;111(19):E2066–2075. PubMed PMC
Geller F, Feenstra B, Carstensen L, et al. Genome-wide association analyses identify variants in developmental genes associated with hypospadias. Nat Genet. 2014;46(9):957–963. PubMed
Matusek T, Djiane A, Jankovics F, Brunner D, Mlodzik M, Mihaly J. The Drosophila formin DAAM regulates the tracheal cuticle pattern through organizing the actin cytoskeleton. Development. 2006;133(5):957–966. PubMed
Zeng ZY, Zhou YH, Zhang WL, et al. Gene expression profiling of nasopharyngeal carcinoma reveals the abnormally regulated Wnt signaling pathway. Hum Pathol. 2007;38(1):120–133. PubMed
Wu X, Sun X, Chen C, Bai C, Wang X. Dynamic gene expressions of peripheral blood mononuclear cells in patients with acute exacerbation of chronic obstructive pulmonary disease: a preliminary study. Crit Care. 2014;18(6):508. PubMed PMC
Barrow JR. Wnt/PCP signaling: a veritable polar star in establishing patterns of polarity in embryonic tissues. Semin Cell Dev Biol. 2006;17(2):185–193. PubMed
Tanaka K Formin family proteins in cytoskeletal control. Biochem Biophys Res Commun. 2000;267(2):479–481. PubMed
Pokidysheva E, Boudko S, Vranka J, et al. Biological role of prolyl 3-hydroxylation in type IV collagen. Proc Natl Acad Sci U S A. 2014;111(1):161–166. PubMed PMC
Shah R, Smith P, Purdie C, et al. The prolyl 3-hydroxylases P3H2 and P3H3 are novel targets for epigenetic silencing in breast cancer. Br J Cancer. 2009;100(10):1687–1696. PubMed PMC
Mordechai S, Gradstein L, Pasanen A, et al. High myopia caused by a mutation in LEPREL1, encoding prolyl 3-hydroxylase 2. Am J Hum Genet. 2011;89(3):438–445. PubMed PMC
Guo H, Tong P, Peng Y, et al. Homozygous loss-of-function mutation of the LEPREL1 gene causes severe non-syndromic high myopia with early-onset cataract. Clin Genet. 2014;86(6):575–579. PubMed
Feng CY, Huang XQ, Cheng XW, Wu RH, Lu F, Jin ZB. Mutational screening of SLC39A5, LEPREL1 and LRPAP1 in a cohort of 187 high myopia patients. Sci Rep. 2017;7(1):1120. PubMed PMC
Santos A, Tsafou K, Stolte C, Pletscher-Frankild S, O’Donoghue SI, Jensen LJ. Comprehensive comparison of large-scale tissue expression datasets. PeerJ. 2015;3:e1054. PubMed PMC
Rare deleterious germline variants and risk of lung cancer