• This record comes from PubMed

Parallel and Gradual Genome Erosion in the Blattabacterium Endosymbionts of Mastotermes darwiniensis and Cryptocercus Wood Roaches

. 2018 Jun 01 ; 10 (6) : 1622-1630.

Language English Country Great Britain, England Media print

Document type Journal Article, Research Support, Non-U.S. Gov't

Almost all examined cockroaches harbor an obligate intracellular endosymbiont, Blattabacterium cuenoti. On the basis of genome content, Blattabacterium has been inferred to recycle nitrogen wastes and provide amino acids and cofactors for its hosts. Most Blattabacterium strains sequenced to date harbor a genome of ∼630 kbp, with the exception of the termite Mastotermes darwiniensis (∼590 kbp) and Cryptocercus punctulatus (∼614 kbp), a representative of the sister group of termites. Such genome reduction may have led to the ultimate loss of Blattabacterium in all termites other than Mastotermes. In this study, we sequenced 11 new Blattabacterium genomes from three species of Cryptocercus in order to shed light on the genomic evolution of Blattabacterium in termites and Cryptocercus. All genomes of Cryptocercus-derived Blattabacterium genomes were reduced (∼614 kbp), except for that associated with Cryptocercus kyebangensis, which comprised 637 kbp. Phylogenetic analysis of these genomes and their content indicates that Blattabacterium experienced parallel genome reduction in Mastotermes and Cryptocercus, possibly due to similar selective forces. We found evidence of ongoing genome reduction in Blattabacterium from three lineages of the C. punctulatus species complex, which independently lost one cysteine biosynthetic gene. We also sequenced the genome of the Blattabacterium associated with Salganea taiwanensis, a subsocial xylophagous cockroach that does not vertically transmit gut symbionts via proctodeal trophallaxis. This genome was 632 kbp, typical of that of nonsubsocial cockroaches. Overall, our results show that genome reduction occurred on multiple occasions in Blattabacterium, and is still ongoing, possibly because of new associations with gut symbionts in some lineages.

See more in PubMed

Bandi C, et al. , . 1995. The establishment of intracellular symbiosis in an ancestor of cockroaches and termites. Proc R Soc B Biol Sci. 2591356:293–299. PubMed

Bourguignon T, et al. , . 2018. Transoceanic dispersal and plate tectonics shaped global cockroach distributions: evidence from mitochondrial phylogenomics. Mol Biol Evol. 354:970–983. PubMed

Brooks MA. 1970. Comments on the classification of intracellular symbiotes of cockroaches and a description of the species. J Invert Pathol. 162:249–258.

Brooks MA, Richards GA.. 1955. Intracellular symbiosis in cockroaches. I. Production of aposymbiotic cockroaches. Biol Bull. 1091:22–39.

Buchfink B, Xie C, Huson DH.. 2015. Fast and sensitive protein alignment using DIAMOND. Nat Methods 121:59–60. PubMed

Burnside CA, Smith PT, Kambhampati S.. 1999. Three new species of the wood roach, Cryptocercus (Blattodea: cryptocercidae), from the eastern United States. J Kans Entomol Soc 72:361–378.

Camacho C, et al. , . 2009. BLAST+: architecture and applications. BMC Bioinformatics 10:421.. PubMed PMC

Castresana J. 2000. Selection of conserved blocks from multiple alignments for their use in phylogenetic analysis. Mol Biol Evol. 174:540–552. PubMed

Che Y, et al. , . 2016. A global molecular phylogeny and timescale of evolution for Cryptocercus woodroaches. Mol Phylogenet Evol. 98:201–209. PubMed

Everaerts C, et al. , . 2008. The Cryptocercus punctulatus species complex (Dictyoptera: cryptocercidae) in the eastern United States: comparison of cuticular hydrocarbons, chromosome number, and DNA sequences. Mol Phylogenet Evol. 473:950–959. PubMed

Fujita A, Shimizu I, Abe T.. 2001. Distribution of lysozyme and protease, and amino acid concentration in the guts of a wood-feeding termite, Reticulitermes speratus (Kolbe): possible digestion of symbiont bacteria transferred by trophallaxis. Physiol Entomol. 262:116–123.

Galperin MY, Makarova KS, Wolf YI, Koonin EV.. 2015. Expanded microbial genome coverage and improved protein family annotation in the COG database. Nucleic Acids Res. 43(D1):D261–D269. PubMed PMC

Hongoh Y. 2010. Diversity and genomes of uncultured microbial symbionts in the termite gut. Biosci Biotechnol Biochem. 746:1145–1151. PubMed

Hunt M, et al. , . 2013. REAPR: a universal tool for genome assembly evaluation. Genome Biol. 145:R47. PubMed PMC

Husnik F, et al. , . 2013. Horizontal gene transfer from diverse bacteria to an insect genome enables a tripartite nested mealybug symbiosis. Cell 1537:1567–1578. PubMed

Hyatt D, et al. , . 2010. Prodigal: prokaryotic gene recognition and translation initiation site identification. BMC Bioinformatics 11:119.. PubMed PMC

Katoh K, Standley DM.. 2013. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol Biol Evol. 304:772–780. PubMed PMC

Kinjo Y, Saitoh S, Tokuda G.. 2015. An efficient strategy developed for next-generation sequencing of endosymbiont genomes performed using crude DNA isolated from host tissues: a case study of Blattabacterium cuenoti inhabiting the fat bodies of cockroaches. Microbes Environ. 303:208–220. PubMed PMC

Lagesen K, et al. , . 2007. RNAmmer: consistent and rapid annotation of ribosomal RNA genes. Nucleic Acids Res. 359:3100–3108. PubMed PMC

Lawrence TJ, et al. , . 2015. FAST: FAST analysis of sequences toolbox. Front Genet. 6:172.. PubMed PMC

Lechner M, et al. , . 2011. Proteinortho : detection of (co-) orthologs in large-scale analysis. BMC Bioinformatics 12:124.. PubMed PMC

Lo C-C, Chain PSG.. 2014. Rapid evaluation and quality control of next generation sequencing data with FaQCs. BMC Bioinformatics 15:366.. PubMed PMC

Lo N, et al. , . 2000. Evidence from multiple gene sequences indicates that termites evolved from wood-feeding cockroaches. Curr Biol. 1013:801–804. PubMed

Lo N, Bandi C, Watanabe H, Nalepa C, Beninati T.. 2003. Evidence for cocladogenesis between diverse dictyopteran lineages and their intracellular endosymbionts. Mol Biol Evol. 206:907–913. PubMed

Lo N, et al. , . 2007. Cockroaches that lack Blattabacterium endosymbionts: the phylogenetically divergent genus Nocticola. Biol Lett. 3:327–330. PubMed PMC

López-Sánchez MJ, et al. , . 2009. Evolutionary convergence and nitrogen metabolism in Blattabacterium strain Bge, primary endosymbiont of the cockroach Blattella germanica. PLoS Genet. 511:e1000721. PubMed PMC

Lowe TM, Eddy SR.. 1997. tRNAscan-SE: a program for inproved detection of transfer RNA genes in genomic sequence. Nucleic Acids Res. 255:955–964. PubMed PMC

Machida M, Kitade O, Miura T, Matsumoto T.. 2001. Nitrogen recycling through proctodeal trophallaxis in the Japanese damp-wood termite Hodotermopsis japonica (Isoptera, Termopsidae). 48:52–56.

Maekawa K, Matsumoto T, Nalepa CA.. 2008. Social biology of the wood-feeding cockroach genus Salganea (Dictyoptera, Blaberidae, Panesthiinae): did ovoviviparity prevent the evolution of eusociality in the lineage?. Insectes Soc. 552:107–114.

Manzano-Marín A, Simon JC, Latorre A.. 2016. Reinventing the wheel and making it round again: evolutionary convergence in Buchnera-Serratia symbiotic consortia between the distantly related Lachninae aphids Tuberolachnus salignus and Cinara cedri. Genome Biol Evol. 85:1440–1458. PubMed PMC

Marchler-Bauer A, Bryant SH.. 2004. CD-Search: protein domain annotations on the fly. Nucleic Acids Res. 32(Web Server):W327–W331. PubMed PMC

McCutcheon JP, McDonald BR, Moran NA.. 2009. Convergent evolution of metabolic roles in bacterial co-symbionts of insects. Proc Natl Acad Sci U S A. 10636:15394–15399. PubMed PMC

Nadalin F, Vezzi F, Policriti A.. 2012. GapFiller: a de novo assembly approach to fill the gap within paired reads. BMC Bioinformatics 13(suppl 14):S8. PubMed PMC

Nalepa CA, Bignell DE, Bandi C.. 2001. Detritivory, coprophagy, and the evolution of digestive mutualisms in Dictyoptera. Insectes Soc. 483:194–201.

Nalepa CA, Luykx P, Klass K, Deitz LL.. 2002. Distribution of karyotypes of the Cryptocercus punctulatus species complex (Dictyoptera: Cryptocercidae) in the Southern Appalachians: relation to habitat and history. Ann Entomol Soc Am. 2: 276–287.

Nawrocki EP, Eddy SR.. 2013. Infernal 1.1: 100-fold faster RNA homology searches. Bioinformatics 2922:2933–2935. PubMed PMC

Neef A, et al. , . 2011. Genome economization in the endosymbiont of the wood roach Cryptocercus punctulatus due to drastic loss of amino acid synthesis capabilities. Genome. Biol Evol. 3:1437–1448. PubMed PMC

Ohkuma M, et al. , . 2015. Acetogenesis from H2 plus CO2 and nitrogen fixation by an endosymbiotic spirochete of a termite-gut cellulolytic protist. Proc Natl Acad Sci U S A. 11233:10224–10230. PubMed PMC

Ohkuma M. 2008. Symbioses of flagellates and prokaryotes in the gut of lower termites. Trends Microbiol. 167:345–352. PubMed

Patiño-Navarrete R, Moya A, Latorre A, Peretó J.. 2013. Comparative genomics of Blattabacterium cuenoti: the frozen legacy of an ancient endosymbiont genome. Genome Biol Evol. 52:351–361. PubMed PMC

Patiño-Navarrete Ret al.. 2014. The cockroach Blattella germanica obtains nitrogen from uric acid through a metabolic pathway shared with its bacterial endosymbiont. Biol Lett. 10:20140407. PubMed PMC

Phillips JE, Hanrahan J, Chamberlin M, Thomson B. 1986. Mechanisms and control of reabsorption in insect hindgut. Adv Insect Physiol. 19:329–422.

Rao Q, et al. , . 2015. Genome reduction and potential metabolic complementation of the dual endosymbionts in the whitefly Bemisia tabaci. BMC Genomics 161:1–13. PubMed PMC

Sabree ZL, et al. , . 2012. Genome shrinkage and loss of nutrient-providing potential in the obligate symbiont of the primitive termite Mastotermes darwiniensis. Appl Environ Microbiol. 781:204–210. PubMed PMC

Sabree ZL, Kambhampati S, Moran NA.. 2009. Nitrogen recycling and nutritional provisioning by Blattabacterium, the cockroach endosymbiont. Proc Natl Acad Sci U S A. 10646:19521–19526. PubMed PMC

Sloan DB, Moran NA.. 2012. Genome reduction and co-evolution between the primary and secondary bacterial symbionts of psyllids. Mol Biol Evol. 2912:3781–3792. PubMed PMC

Stamatakis A. 2014. RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 309:1312–1313. PubMed PMC

Suyama M, Torrents D, Bork P.. 2006. PAL2NAL: robust conversion of protein sequence alignments into the corresponding codon alignments. Nucleic Acids Res. 34(Web Server):W609–W612. PubMed PMC

Suzek BE, Wang Y, Huang H, McGarvey PB, Wu CH.. 2015. UniRef clusters: a comprehensive and scalable alternative for improving sequence similarity searches. Bioinformatics 316:926–932. PubMed PMC

Tai V, et al. , . 2016. Genome evolution and nitrogen fixation in bacterial ectosymbionts of a protist inhabiting wood-feeding cockroaches. Appl Environ Microbiol. 8215:4682–4695. PubMed PMC

Tokuda G, et al. , . 2013. Maintenance of essential amino acid synthesis pathways in the Blattabacterium cuenoti symbiont of a wood-feeding cockroach. Biol Lett. 93:20121153. PubMed PMC

Tokuda G, et al. , . 2014. Metabolomic profiling of 13C-labelled cellulose digestion in a lower termite: insights into gut symbiont function. Proc R Soc B Biol Sci. 2811789:20140990. PubMed PMC

Vaishampayan PA, et al. , . 2007. Molecular evidence and phylogenetic affiliations of Wolbachia in cockroaches. Mol Phylogenet Evol. 443:1346–1351. PubMed

Wu M, Scott AJ.. 2012. Phylogenomic analysis of bacterial and archaeal sequences with AMPHORA2. Bioinformatics 287:1033–1034. PubMed

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...