Adaptive Fitness Predictors in Coevolutionary Cartesian Genetic Programming
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články
PubMed
29863421
DOI
10.1162/evco_a_00229
Knihovny.cz E-zdroje
- Klíčová slova
- Cartesian genetic programming, coevolutionary algorithms, evolutionary design, fitness prediction, image processing., symbolic regression,
- MeSH
- algoritmy * MeSH
- biologická evoluce * MeSH
- genetická zdatnost MeSH
- lidé MeSH
- počítačová simulace MeSH
- počítačové zpracování obrazu metody MeSH
- poměr signál - šum MeSH
- regresní analýza MeSH
- software * MeSH
- vylepšení obrazu metody MeSH
- výpočetní biologie metody MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
In genetic programming (GP), computer programs are often coevolved with training data subsets that are known as fitness predictors. In order to maximize performance of GP, it is important to find the most suitable parameters of coevolution, particularly the fitness predictor size. This is a very time-consuming process as the predictor size depends on a given application, and many experiments have to be performed to find its suitable size. A new method is proposed which enables us to automatically adapt the predictor and its size for a given problem and thus to reduce not only the time of evolution, but also the time needed to tune the evolutionary algorithm. The method was implemented in the context of Cartesian genetic programming and evaluated using five symbolic regression problems and three image filter design problems. In comparison with three different CGP implementations, the time required by CGP search was reduced while the quality of results remained unaffected.
Citace poskytuje Crossref.org