Open-Ended Coaxial Probe Technique for Dielectric Measurement of Biological Tissues: Challenges and Common Practices

. 2018 Jun 05 ; 8 (2) : . [epub] 20180605

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články, přehledy

Perzistentní odkaz   https://www.medvik.cz/link/pmid29874833

Electromagnetic (EM) medical technologies are rapidly expanding worldwide for both diagnostics and therapeutics. As these technologies are low-cost and minimally invasive, they have been the focus of significant research efforts in recent years. Such technologies are often based on the assumption that there is a contrast in the dielectric properties of different tissue types or that the properties of particular tissues fall within a defined range. Thus, accurate knowledge of the dielectric properties of biological tissues is fundamental to EM medical technologies. Over the past decades, numerous studies were conducted to expand the dielectric repository of biological tissues. However, dielectric data is not yet available for every tissue type and at every temperature and frequency. For this reason, dielectric measurements may be performed by researchers who are not specialists in the acquisition of tissue dielectric properties. To this end, this paper reviews the tissue dielectric measurement process performed with an open-ended coaxial probe. Given the high number of factors, including equipment- and tissue-related confounders, that can increase the measurement uncertainty or introduce errors into the tissue dielectric data, this work discusses each step of the coaxial probe measurement procedure, highlighting common practices, challenges, and techniques for controlling and compensating for confounders.

Zobrazit více v PubMed

Formica D., Silvestri S. Biological Effects of Exposure to Magnetic Resonance Imaging: An Overview. Biomed. Eng. Online. 2004;3:11. doi: 10.1186/1475-925X-3-11. PubMed DOI PMC

Martellosio A., Pasian M., Bozzi M., Perregrini L., Mazzanti A. Exposure Limits and Dielectric Contrast for Breast Cancer Tissues: Experimental Results up to 50 GHz; Proceedings of the 11th European Conference on Antennas and Propagation (EUCAP); Paris, France. 19–24 March 2017; pp. 667–671.

Nikolova N.K. Microwave Imaging for Breast Cancer. IEEE Microw. Mag. 2011;12:78–94. doi: 10.1109/MMM.2011.942702. DOI

Pastorino M. Microwave Imaging. John Wiley & Sons; Hoboken, NJ, USA: 2010.

Noghanian S. Introduction to Microwave Imaging. Springer; New York, NY, USA: 2014.

Zou Y., Guo Z. A Review of Electrical Impedance Techniques for Breast Cancer Detection. Med. Eng. Phys. 2003;25:79–90. doi: 10.1016/S1350-4533(02)00194-7. PubMed DOI

Brown B. Electrical Impedance Tomography (EIT): A Review. J. Med. Eng. Technol. 2003;27:97–108. doi: 10.1080/0309190021000059687. PubMed DOI

Waldmann A.D., Ortola C.F., Martinez M.M., Vidal A., Santos A., Marquez M.P., Roka P.L., Bohm S.H., Suarez-Sipmann F. Position-Dependent Distribution of Lung Ventilation—A Feasability Study; Proceedings of the 2015 IEEE Sensors Applications Symposium (SAS); Zadar, Croatia. 13–15 April 2015.

Avery J., Dowrick T., Faulkner M., Goren N., Holder D. A Versatile and Reproducible Multi-Frequency Electrical Impedance Tomography System. Sensors. 2017;17:280. doi: 10.3390/s17020280. PubMed DOI PMC

Halter R.J., Zhou T., Meaney P.M., Hartov A., Barth R.J., Rosenkranz K.M., Wells W.A., Kogel C.A., Borsic A., Rizzo E.J., et al. The Correlation of in Vivo and Ex Vivo Tissue Dielectric Properties to Validate Electromagnetic Breast Imaging: Initial Clinical Experience. Physiol. Meas. 2009;30:S121–S136. doi: 10.1088/0967-3334/30/6/S08. PubMed DOI PMC

Lazebnik M., McCartney L., Popovic D., Watkins C.B., Lindstrom M.J., Harter J., Sewall S., Magliocco A., Booske J.H., Okoniewski M., et al. A Large-Scale Study of the Ultrawideband Microwave Dielectric Properties of Normal Breast Tissue Obtained from Reduction Surgeries. Phys. Med. Biol. 2007;52:2637–2656. doi: 10.1088/0031-9155/52/10/001. PubMed DOI

Sugitani T., Kubota S., Kuroki S., Sogo K., Arihiro K., Okada M., Kadoya T., Hide M., Oda M., Kikkawa T. Complex Permittivities of Breast Tumor Tissues Obtained from Cancer Surgeries. Appl. Phys. Lett. 2014;104:253702. doi: 10.1063/1.4885087. DOI

Porter E., Kirshin E., Santorelli A., Coates M., Popović M. Time-Domain Multistatic Radar System for Microwave Breast Screening. IEEE Antennas Wirel. Propag. Lett. 2013;12:229–232. doi: 10.1109/LAWP.2013.2247374. DOI

Scapaticci R., Bellizzi G., Catapano I., Crocco L., Bucci O.M. An Effective Procedure for MNP-Enhanced Breast Cancer Microwave Imaging. IEEE Trans. Biomed. Eng. 2014;61:1071–1079. doi: 10.1109/TBME.2013.2293839. PubMed DOI

O’Halloran M., Morgan F., Flores-Tapia D., Byrne D., Glavin M., Jones E. Prototype Ultra Wideband Radar System for Bladder Monitoring Applications. Prog. Electromagn. Res. C. 2012;33:17–28. doi: 10.2528/PIERC12080805. DOI

Arunachalam K., MacCarini P., De Luca V., Tognolatti P., Bardati F., Snow B., Stauffer P. Detection of Vesicoureteral Reflux Using Microwave Radiometrysystem Characterization with Tissue Phantoms. IEEE Trans. Biomed. Eng. 2011;58:1629–1636. doi: 10.1109/TBME.2011.2107515. PubMed DOI PMC

Ireland D., Bialkowski M.E. Microwave Head Imaging for Stroke Detection. Prog. Electromagn. Res. M. 2011;21:163–175. doi: 10.2528/PIERM11082907. DOI

Persson M., Fhager A., Trefna H.D., Yu Y., McKelvey T., Pegenius G., Karlsson J.E., Elam M. Microwave-Based Stroke Diagnosis Making Global Prehospital Thrombolytic Treatment Possible. IEEE Trans. Biomed. Eng. 2014;61:2806–2817. doi: 10.1109/TBME.2014.2330554. PubMed DOI

Dowrick T., Blochet C., Holder D. In Vivo Bioimpedance Measurement of Healthy and Ischaemic Rat Brain: Implications for Stroke Imaging Using Electrical Impedance Tomography. Physiol. Meas. 2015;36:1273–1282. doi: 10.1088/0967-3334/36/6/1273. PubMed DOI

Scapaticci R., Bucci O.M., Catapano I., Crocco L. Differential Microwave Imaging for Brain Stroke Followup. Int. J. Antennas Propag. 2014 doi: 10.1155/2014/312528. DOI

Datta N.R., Ordóñez S.G., Gaipl U.S., Paulides M.M., Crezee H., Gellermann J., Marder D., Puric E., Bodis S. Local Hyperthermia Combined with Radiotherapy And-/or Chemotherapy: Recent Advances and Promises for the Future. Cancer Treat. Rev. 2015;41:742–753. doi: 10.1016/j.ctrv.2015.05.009. PubMed DOI

Issels R.D., Lindner L.H., Ghadjar P., Reichardt P., Hohenberger P., Verweij J., Abdel-Rahman S., Daugaard S., Salat C., Vujaskovic Z., et al. 13LBA Improved Overall Survival by Adding Regional Hyperthermia to Neo-Adjuvant Chemotherapy in Patients with Localized High-Risk Soft Tissue Sarcoma (HR-STS): Long-Term Outcomes of the EORTC 62961/ESHO Randomized Phase III Study. Eur. J. Cancer. 2015;51:S716. doi: 10.1016/S0959-8049(15)30071-X. DOI

Wessalowski R., Schneider D.T., Mils O., Friemann V., Kyrillopoulou O., Schaper J., Matuschek C., Rothe K., Leuschner I., Willers R., et al. Regional Deep Hyperthermia for Salvage Treatment of Children and Adolescents with Refractory or Recurrent Non-Testicular Malignant Germ-Cell Tumours: An Open-Label, Non-Randomised, Single-Institution, Phase 2 Study. Lancet Oncol. 2013;14:843–852. doi: 10.1016/S1470-2045(13)70271-7. PubMed DOI

Ekstrand V., Wiksell H., Schultz I., Sandstedt B., Rotstein S., Eriksson A. Influence of Electrical and Thermal Properties on RF Ablation of Breast Cancer: Is the Tumour Preferentially Heated? Biomed. Eng. Online. 2005;4 doi: 10.1186/1475-925X-4-41. PubMed DOI PMC

Bargellini I., Bozzi E., Cioni R., Parentini B., Bartolozzi C. Radiofrequency Ablation of Lung Tumours. Insights Imaging. 2011;2:567–576. doi: 10.1007/s13244-011-0110-7. PubMed DOI PMC

Curley S.A., Marra P., Beaty K., Ellis L.M., Vauthey J.N., Abdalla E.K., Scaife C., Raut C., Wolff R., Choi H., et al. Early and Late Complications after Radiofrequency Ablation of Malignant Liver Tumors in 608 Patients. Ann. Surg. 2004;239:450–458. doi: 10.1097/01.sla.0000118373.31781.f2. PubMed DOI PMC

Stauffer P.R., Rossetto F., Prakash M., Neuman D.G., Lee T. Phantom and Animal Tissues for Modelling the Electrical Properties of Human Liver. Int. J. Hyperth. 2003;19:89–101. doi: 10.1080/0265673021000017064. PubMed DOI

Yang D., Converse M., Mahvi D., Webster J. Measurement and Analysis of Tissue Temperature during Microwave Liver Ablation. IEEE Trans. Biomed. Eng. 2007;54:150–155. doi: 10.1109/TBME.2006.884647. PubMed DOI

Lopresto V., Pinto R., Lovisolo G., Cavagnaro M. Changes in the Dielectric Properties of Ex Vivo Bovine Liver during Microwave Thermal Ablation at 2.45 GHz. Phys. Med. Biol. 2012;57:2309–2327. doi: 10.1088/0031-9155/57/8/2309. PubMed DOI

Lazebnik M., Converse M., Booske J.H., Hagness S.C. Ultrawideband Temperature-Dependent Dielectric Properties of Animal Liver Tissue in the Microwave Frequency Range. Phys. Med. Biol. 2006;51:1941–1955. doi: 10.1088/0031-9155/51/7/022. PubMed DOI

Brace C.L. Temperature-Dependent Dielectric Properties of Liver Tissue Measured during Thermal Ablation: Toward an Improved Numerical Model; Proceedings of the IEEE Engineering in Medicine and Biology Society; Vancouver, BC, Canada. 20–25 August 2008; pp. 230–233. PubMed

Wust P., Hildebrandt B., Sreenivasa G., Rau B., Gellermann J., Riess H., Felix R., Schlag P.M. Hyperthermia in Combined Treatment of Cancer. Lancet Oncol. 2002;3:487–497. doi: 10.1016/S1470-2045(02)00818-5. PubMed DOI

Ahmed M., Brace C.L., Lee F.T., Goldberg S.N. Principles of and Advances in Percutaneous Ablation. Radiology. 2011;258:351–369. doi: 10.1148/radiol.10081634. PubMed DOI PMC

Dupuy D.E. Image-Guided Thermal Ablation of Lung Malignancies. Radiology. 2011;260:633–655. doi: 10.1148/radiol.11091126. PubMed DOI

Ji Z., Brace C.L. Expanded Modeling of Temperature-Dependent Dielectric Properties for Microwave Thermal Ablation. Phys. Med. Biol. 2011;56:5249–5264. doi: 10.1088/0031-9155/56/16/011. PubMed DOI PMC

Cavagnaro M., Pinto R., Lopresto V. Numerical Models to Evaluate the Temperature Increase Induced by Ex Vivo Microwave Thermal Ablation. Phys. Med. Biol. 2015;60:3287–3311. doi: 10.1088/0031-9155/60/8/3287. PubMed DOI

O’Rourke A.P., Lazebnik M., Bertram J.M., Converse M.C., Hagness S.C., Webster J.G., Mahvi D.M. Dielectric Properties of Human Normal, Malignant and Cirrhotic Liver Tissue: In Vivo and Ex Vivo Measurements from 0.5 to 20 GHz Using a Precision Open-Ended Coaxial Probe. Phys. Med. Biol. 2007;52:4707–4719. doi: 10.1088/0031-9155/52/15/022. PubMed DOI

Stuchly M.A., Athey T.W., Samaras G.M., Taylor G.E. Measurement of Radio Frequency Permittivity of Biological Tissues with an Open-Ended Coaxial Line: Part II—Experimental Results. IEEE Trans. Microw. Theory Tech. 1982;30:87–92. doi: 10.1109/TMTT.1982.1131022. DOI

Burdette E., Cain F., Seals J. In Vivo Probe Measurement Technique for Determining Dielectric Properties at VHF through Microwave Frequencies. IEEE Trans. Microw. Theory Tech. 1980;28:414–427. doi: 10.1109/TMTT.1980.1130087. DOI

Kraszewski A., Stuchly M.A., Stuchly S.S., Smith A.M. In Vivo and in Vitro Dielectric Properties of Animal Tissues at Radio Frequencies. Bioelectromagnetics. 1982;3:421–432. doi: 10.1002/bem.2250030405. PubMed DOI

Schwartz J.L., Mealing G.A. Dielectric Properties of Frog Tissues in Vivo and in Vitro. Phys. Med. Biol. 1985;30:117–124. doi: 10.1088/0031-9155/30/2/001. PubMed DOI

Gabriel S., Lau R.W., Gabriel C. The Dielectric Properties of Biological Tissues: II. Measurements in the Frequency Range 10 Hz to 20 GHz. Phys. Med. Biol. 1996;41:2251–2269. doi: 10.1088/0031-9155/41/11/002. PubMed DOI

Peyman A., Holden S., Gabriel C. Mobile Telecommunications and Health Research Programme: Dielectric Properties of Tissues at Microwave Frequencies. Microwave Consultants Limited; London, UK: 2005.

Abdilla L., Sammut C., Mangion L. Dielectric Properties of Muscle and Liver from 500 MHz–40 GHz. Electromagn. Biol. Med. 2013;32:244–252. doi: 10.3109/15368378.2013.776436. PubMed DOI

Schwan H.P., Foster K.R. RF Field Interactions with Biological Systems: Electrical Properties and Biophysical Mechanisms. Proc. IEEE. 1980;68:104–113. doi: 10.1109/PROC.1980.11589. DOI

Foster K., Schwan H. Dielectric Properties of Tissues and Biological Materials: A Critical Review. Crit. Rev. Biomed. Eng. 1989;17:25–104. PubMed

Gabriel S., Lau R.W., Gabriel C. The Dielectric Properties of Biological Tissues: III. Parametric Models for the Dielectric Spectrum of Tissues. Phys. Med. Biol. 1996;41:2271–2293. doi: 10.1088/0031-9155/41/11/003. PubMed DOI

Gregory A., Clarke R., Hodgetts T., Symm G. RF and Microwave Dielectric Measurements upon Layered Materials Using Coaxial Sensors. National Physical Laboratory; Teddington, UK: 2008. NPL Report MAT 13.

Gulich R., Köhler M., Lunkenheimer P., Loidl A. Dielectric Spectroscopy on Aqueous Electrolytic Solutions. Radiat. Environ. Biophys. 2009;48:107–114. doi: 10.1007/s00411-008-0195-7. PubMed DOI

England T.S., Sharples N.A.A. Dielectric Properties of the Human Body in the Microwave Region of the Spectrum. Nature. 1949;163:487–488. doi: 10.1038/163487b0. PubMed DOI

Cook H.F. The Dielectric Behaviour of Some Types of Human Tissues at Microwave Frequencies. Br. J. Appl. Phys. 1951;2:295–300. doi: 10.1088/0508-3443/2/10/304. DOI

Schwan H.P. Electrical Properties of Tissue and Cell Suspensions. Adv. Biol. Med. Phys. 1957;5:147–209. doi: 10.1016/B978-1-4832-3111-2.50008-0. PubMed DOI

Schwan H.P., Li K. Capacity and Conductivity of Body Tissues at Ultrahigh Frequencies. Proc. IRE. 1953;41:1735–1740. doi: 10.1109/JRPROC.1953.274358. DOI

Stuchly M.A., Stuchly S.S. Dielectric Properties of Biological Substances—Tabulated. J. Microw. Power. 1980;15:19–25. doi: 10.1080/16070658.1980.11689181. DOI

Burdette E.C., Friederich P.G., Seaman R.L., Larsen L.E. In Situ Permittivity of Canine Brain: Regional Variations and Postmortem Changes. IEEE Trans. Microw. Theory Tech. 1986;34:38–50. doi: 10.1109/TMTT.1986.1133278. DOI

Smith S.R., Foster K.R. Dielectric Properties of Low-Water-Content Tissues. Phys. Med. Biol. 1985;30:965–973. doi: 10.1088/0031-9155/30/9/008. PubMed DOI

Zhadobov M., Augustine R., Sauleau R., Alekseev S., Di Paola A., Le Quément C., Mahamoud Y.S., Le Dréan Y. Complex Permittivity of Representative Biological Solutions in the 2–67 GHz Range. Bioelectromagnetics. 2012;33:346–355. doi: 10.1002/bem.20713. PubMed DOI

Di Meo S., Martellosio A., Pasian M., Bozzi M., Perregrini L., Mazzanti A., Svelto F., Summers P., Renne G., Preda L., et al. Experimental Validation of the Dielectric Permittivity of Breast Cancer Tissues up to 50 GHz; Proceedings of the IEEE MTT-S International Microwave Workshop Advanced Materials and Processes for RF and THz Applications (IMWS-AMP); Pavia, Italy. 20–22 September 2017; pp. 20–22.

Stuchly M.A., Stuchly S.S. Coaxial Line Reflection Methods for Measuring Dielectric Properties of Biological Substances at Radio and Microwave Frequencies-A Review. IEEE Trans. Instrum. Meas. 1980;29:176–183. doi: 10.1109/TIM.1980.4314902. DOI

Athey T.W., Stuchly M.A., Stuchly S.S. Measurement of Radio Frequency Permittivity of Biological Tissues with an Open-Ended Coaxial Line: Part I. IEEE Trans. Microw. Theory Tech. 1982;30:82–86. doi: 10.1109/TMTT.1982.1131021. DOI

Gabriel C., Grant E.H., Young I.R. Use of Time Domain Spectroscopy for Measuring Dielectric Properties with a Coaxial Probe. J. Phys. E. 1986;19:843–846. doi: 10.1088/0022-3735/19/10/016. DOI

Foster K.R., Schepps J.L., Stoy R.D., Schwan H.P. Dielectric Properties of Brain Tissue between 0.01 and 10 GHz. Phys. Med. Biol. 1979;24:1177–1187. doi: 10.1088/0031-9155/24/6/008. PubMed DOI

Surowiec A., Stuchly S.S., Eidus L., Swarup A. In Vitro Dielectric Properties of Human Tissues at Radiofrequencies. Phys. Med. Biol. 1987;32:615. doi: 10.1088/0031-9155/32/5/007. PubMed DOI

Pethig R. Dielectric Properties of Biological Materials: Biophysical and Medical Applications. IEEE Trans. Electr. Insul. 1984;EI-19:453–474. doi: 10.1109/TEI.1984.298769. DOI

Schepps J.L., Foster K.R. The UHF and Microwave Dielectric Properties of Normal and Tumour Tissues: Variation in Dielectric Properties with Tissue Water Content. Phys. Med. Biol. 1980;25:1149. doi: 10.1088/0031-9155/25/6/012. PubMed DOI

Gabriel C., Gabriel S., Corthout E. The Dielectric Properties of Biological Tissues: I. Literature Survey. Phys. Med. Biol. 1996;41:2231–2249. doi: 10.1088/0031-9155/41/11/001. PubMed DOI

Gabriel C. Compilation of the Dielectric Properties of Body Tissues at RF and Microwave Frequencies. Occupational and Environmental Health Directorate, Radiofrequency Radiation Division; Brooks Air Force Base, TX, USA: 1996. Report N.AL/OE-TR-1996-0037.

Federal Communications Commission . Tissue Dielectric Properties. FCC; Washington, DC, USA: 2008. [(accessed on 30 October 2017)]. Available online: https://www.fcc.gov/general/body-tissue-dielectric-parameters.

Andreuccetti D., Fossi R., Petrucci C. An Internet Resource for the Calculation of the Dielectric Properties of Body Tissues in the Frequency Range 10 Hz–100 GHz. IFAC-CNR; Florence, Italy: 1997. [(accessed on 4 June 2018)]. Available online: http://niremf.ifac.cnr.it/tissprop/

Alanen E., Lahtinen T., Nuutinen J. Variational Formulation of Open-Ended Coaxial Line in Contact with Layered Biological Medium. IEEE Trans. Biomed. Eng. 1998;45:1241–1248. doi: 10.1109/10.720202. PubMed DOI

Hagl D., Popovic D., Hagness S.C., Booske J.H., Okoniewski M. Sensing Volume of Open-Ended Coaxial Probes for Dielectric Characterization of Breast Tissue at Microwave Frequencies. IEEE Trans. Microw. Theory Tech. 2003;51:1194–1206. doi: 10.1109/TMTT.2003.809626. DOI

Popovic D., Okoniewski M., Hagl D., Booske J.H., Hagness S.C. Volume Sensing Properties of Open Ended Coaxial Probes for Dielectric Spectroscopy of Breast Tissue; Proceedings of the IEEE Antennas and Propagation Society; Boston, MA, USA. 8–13 July 2001; pp. 254–257.

Popovic D., McCartney L., Beasley C., Lazebnik M., Okoniewski M., Hagness S.C., Booske J.H. Precision Open-Ended Coaxial Probes for in Vivo and Ex Vivo Dielectric Spectroscopy of Biological Tissues at Microwave Frequencies. IEEE Trans. Microw. Theory Tech. 2005;53:1713–1721. doi: 10.1109/TMTT.2005.847111. DOI

Taylor B.N., Kuyatt C.E. Guidelines for Evaluating and Expressing the Uncertainty of NIST Measurement Results. US Department of Commerce, Technology Administration, National Institute of Standards and Technology; Gaithersburg, MD, USA: 1994. NIST Technical Note 1297.

Gabriel C., Peyman A. Dielectric Measurement: Error Analysis and Assessment of Uncertainty. Phys. Med. Biol. 2006;51:6033–6046. doi: 10.1088/0031-9155/51/23/006. PubMed DOI

Lazebnik M., Popovic D., McCartney L., Watkins C.B., Lindstrom M.J., Harter J., Sewall S., Ogilvie T., Magliocco A., Breslin T.M., et al. A Large-Scale Study of the Ultrawideband Microwave Dielectric Properties of Normal, Benign and Malignant Breast Tissues Obtained from Cancer Surgeries. Phys. Med. Biol. 2007;52:6093–6115. doi: 10.1088/0031-9155/52/20/002. PubMed DOI

Chaudhary S.S., Mishra R.K., Swarup A., Thomas J.M. Dielectric Properties of Normal & Malignant Human Breast Tissues at Radiowave & Microwave Frequencies. Indian J. Biochem. Biophys. 1984;21:76–79. PubMed

Joines W.T., Zhang Y., Li C., Jirtle R.L. The Measured Electrical Properties of Normal and Malignant Human Tissues from 50 to 900 MHz. Med. Phys. 1994;21:547–550. doi: 10.1118/1.597312. PubMed DOI

Martellosio A., Pasian M., Bozzi M., Perregrini L., Mazzanti A., Svelto F., Summers P.E., Renne G., Preda L., Bellomi M. Dielectric Properties Characterization from 0.5 to 50 GHz of Breast Cancer Tissues. IEEE Trans. Microw. Theory Tech. 2017;65:998–1011. doi: 10.1109/TMTT.2016.2631162. DOI

Meaney P.M., Gregory A., Epstein N., Paulsen K.D. Microwave Open-Ended Coaxial Dielectric Probe: Interpretation of the Sensing Volume Re-Visited. BMC Med. Phys. 2014;14:1–11. doi: 10.1186/1756-6649-14-3. PubMed DOI PMC

Meaney P.M., Gregory A.P., Seppälä J., Lahtinen T. Open-Ended Coaxial Dielectric Probe Effective Penetration Depth Determination. IEEE Trans. Microw. Theory Tech. 2016;64:915–923. doi: 10.1109/TMTT.2016.2519027. PubMed DOI PMC

Porter E., La Gioia A., Santorelli A., O’Halloran M. Modeling of the Dielectric Properties of Biological Tissues within the Histology Region. IEEE Trans. Dielectr. Electr. Insul. 2017;24:3290–3301. doi: 10.1109/TDEI.2017.006690. DOI

Porter E., O’Halloran M. Investigation of Histology Region in Dielectric Measurements of Heterogeneous Tissues. IEEE Trans. Dielectr. Electr. Insul. 2017;65:5541–5552. doi: 10.1109/TAP.2017.2741026. DOI

Peyman A., Kos B., Djokić M., Trotovšek B., Limbaeck-Stokin C., Serša G., Miklavčič D. Variation in Dielectric Properties Due to Pathological Changes in Human Liver. Bioelectromagnetics. 2015;36:603–612. doi: 10.1002/bem.21939. PubMed DOI

Sugitani T., Arihiro K., Kikkawa T. Comparative Study on Dielectric Constants and Conductivities of Invasive Ductal Carcinoma Tissues. IEEE Eng. Med. Biol. Soc. 2015:4387–4390. doi: 10.1109/EMBC.2015.7319367. PubMed DOI

Sabouni A., Hahn C., Noghanian S., Sauter E., Weiland T. Study of the Effects of Changing Physiological Conditions on Dielectric Properties of Breast Tissues. ISRN Biomed. Imaging. 2013;2013:894153. doi: 10.1155/2013/894153. DOI

Reinecke T., Hagemeier L., Schulte V., Klintschar M., Zimmermann S. Quantification of Edema in Human Brain Tissue by Determination of Electromagnetic Parameters; Proceedings of the IEEE Sensors; Baltimore, MD, USA. 3–6 November 2013; pp. 1–4.

Nicolson A., Ross G.F. Measurement of the Intrinsic Properties of Materials by Time-Domain Techniques. IEEE Trans. Instrum. Meas. 1970;19:377–382. doi: 10.1109/TIM.1970.4313932. DOI

Weir W.B. Automatic Measurement of Complex Dielectric Constant and Permeability. Proc. IEEE. 1974;62:33–36. doi: 10.1109/PROC.1974.9382. DOI

Baker-Jarvis J., Vanzura E.J., Kissick W.A. Improved Technique for Determining Complex Permittivity with the Transmission/Reflection Method. IEEE Trans. Microw. Theory Tech. 1990;38:1096–1103. doi: 10.1109/22.57336. DOI

Kim S., Baker-Jarvis J. An Approximate Approach To Determining the Permittivity and Permeability near λ/2 Resonances in Transmission/Reflection Measurements. Prog. Electromagn. Res. B. 2014;58:95–109. doi: 10.2528/PIERB13121308. DOI

Boughriet A.H., Legrand C., Chapoton A. Noniterative Stable Transmission/Reflection Method for Low-Loss Material Complex Permittivity Determination. IEEE Trans. Microw. Theory Tech. 1997;45:52–57. doi: 10.1109/22.552032. DOI

Baker-Jarvis J., Janezic M., Domich P., Geyer R. Analysis of an Open-Ended Coaxial Probe with Lift-off for Non Destructive Testing. IEEE Trans. Instrum. Meas. 1994;43:1–8. doi: 10.1109/19.328897. DOI

Gregory A., Clarke R. A Review of RF and Microwave Techniques for Dielectric Measurements on Polar Liquids. IEEE Trans. Dielectr. Electr. Insul. 2006;13:727–743. doi: 10.1109/TDEI.2006.1667730. DOI

Agilent . Basics of Measuring the Dielectric Properties of Materials. Agilent Technologies; Santa Clara, CA, USA: 2005.

Land D.V., Campbell A.M. A Quick Accurate Method for Measuring the Microwave Dielectric Properties of Small Tissue Samples. Phys. Med. Biol. 1992;37:183. doi: 10.1088/0031-9155/37/1/013. PubMed DOI

Campbell A., Land D.V. Dielectric Properties of Female Human Breast Tissue Measured in Vitro at 3.2 GHz. Phys. Med. Biol. 1992;37:193–210. doi: 10.1088/0031-9155/37/1/014. PubMed DOI

Peng Z., Hwang J.Y., Andriese M. Maximum Sample Volume for Permittivity Measurements by Cavity Perturbation Technique. IEEE Trans. Instrum. Meas. 2014;63:450–455. doi: 10.1109/TIM.2013.2279496. DOI

Campbell A. Measurements and Analysis of the Microwave Dielectric Properties of Tissues. J. Appl. Phys. 1990;22:95.

Ramos A., Bertemes-Filho P. Numerical Sensitivity Modeling for the Detection of Skin Tumors by Using Tetrapolar Probe. Electromagn. Biol. Med. 2011;30:235–245. doi: 10.3109/15368378.2011.589555. PubMed DOI

Raghavan K., Porterfield J.E., Kottam A.T.G., Feldman M.D., Escobedo D., Valvano J.W., Pearce J.A. Electrical Conductivity and Permittivity of Murine Myocardium. IEEE Trans. Biomed. Eng. 2009;56:2044–2053. doi: 10.1109/TBME.2009.2012401. PubMed DOI

Karki B., Wi H., McEwan A., Kwon H., Oh T.I., Woo E.J., Seo J.K. Evaluation of a Multi-Electrode Bioimpedance Spectroscopy Tensor Probe to Detect the Anisotropic Conductivity Spectra of Biological Tissues. Meas. Sci. Technol. 2014;25:075702. doi: 10.1088/0957-0233/25/7/075702. DOI

Misra D.K. A Quasi-Static Analysis of Open-Ended Coaxial Lines. IEEE Trans. Microw. Theory Tech. 1987;35:925–928. doi: 10.1109/TMTT.1987.1133782. DOI

Grant J.P., Clarke R.N., Symm G.T., Spyron N.M. A Critical Study of the Open-Ended Coaxial-Line Sensor Technique for RF and Microwave Complex Permittivity Measurements. J. Phys. E Sci. Instrum. 1989;22:757–770. doi: 10.1088/0022-3735/22/9/015. DOI

Jenkins S., Preece A.W., Hodgetts T.E., Symm G.T., Warham A.G.P., Clarke R.N. Comparison of Three Numerical Treatments for the Open-Ended Coaxial Line Sensor. Electron. Lett. 1990;26:234–236. doi: 10.1049/el:19900158. DOI

Misra D. On the Measurement of the Complex Permittivity of Materials by an Open-Ended Coaxial Probe. IEEE Microw. Guid. Wave Lett. 1995;5:161–163. doi: 10.1109/75.374085. DOI

Perez Cesaretti M.D. Ph.D. Thesis. University of Bologna; Bologna, Italy: 2012. General Effective Medium Model for the Complex Permittivity Extraction with an Open-Ended Coaxial Probe in Presence of a Multilayer Material under Test.

Keysight Technologies . Keysight E5063A ENA Series Network Analyzer. Keysight Technologies; Santa Clara, CA, USA: 2015.

Gabriel C., Chan T.Y., Grant E.H. Admittance Models for Open Ended Coaxial Probes and Their Place in Dielectric Spectroscopy. Phys. Med. Biol. 1994;39:2183–2200. doi: 10.1088/0031-9155/39/12/004. PubMed DOI

Berube D., Ghannouchi F.M., Savard P. A Comparative Study of Four Open-Ended Coaxial Probe Models for Permittivity Measurements of Lossy Dielectric/Biological Materials at Microwave Frequencies. IEEE Trans. Microw. Theory Tech. 1996;44:1928–1934. doi: 10.1109/22.539951. DOI

Zajíček R., Oppl L., Vrba J. Broadband Measurement of Complex Permitivity Using Reflection Method and Coaxial Probes. Radioengineering. 2008;17:14–19.

Schwan H.P., Foster K.R. Microwave Dielectric Properties of Tissue. Some Comments on the Rotational Mobility of Tissue Water. Biophys. J. 1977;17:193–197. doi: 10.1016/S0006-3495(77)85637-3. PubMed DOI PMC

Peyman A. Dielectric Properties of Tissues; Variation with Structure and Composition; Proceedings of the International Conference on Electromagnetics in Advanced Applications (ICEAA); Torino, Italy. 14–18 September 2009; pp. 863–864.

Popovic D., Okoniewski M. Effects of Mechanical Flaws in Open-Ended Coaxial Probes for Dielectric Spectroscopy. IEEE Microw. Wirel. Components Lett. 2002;12:401–403. doi: 10.1109/LMWC.2002.803192. DOI

Keysight N1501A Dielectric Probe Kit 10 MHz to 50 GHz: Technical Overview. [(accessed on 30 October 2017)];2015 Available online: http://www.Keysight.Com/En/Pd-2492144-Pn-N1501A/Dielectric-Probe-Kit.

Karacolak T., Cooper R., Unlu E.S., Topsakal E. Dielectric Properties of Porcine Skin Tissue and in Vivo Testing of Implantable Antennas Using Pigs as Model Animals. IEEE Antennas Wirel. Propag. Lett. 2012;11:1686–1689. doi: 10.1109/LAWP.2013.2241722. DOI

Nyshadham A., Sibbald C.L., Stuchly S.S. Permittivity Measurements Using Open-Ended Sensors and Reference Liquid Calibration—An Uncertainty Analysis. IEEE Trans. Microw. Theory Tech. 1992;40:305–314. doi: 10.1109/22.120103. DOI

Marsland T.P., Evans S. Dielectric Measurements with an Open-Ended Coaxial Probe. IEE Proc. H Microw. Antennas Propag. 1987;134:341–349. doi: 10.1049/ip-h-2.1987.0068. DOI

Piuzzi E., Merla C., Cannazza G., Zambotti A., Apollonio F., Cataldo A., D’Atanasio P., De Benedetto E., Liberti M. A Comparative Analysis between Customized and Commercial Systems for Complex Permittivity Measurements on Liquid Samples at Microwave Frequencies. IEEE Trans. Instrum. Meas. 2013;62:1034–1046. doi: 10.1109/TIM.2012.2236791. DOI

Packard H. Automating the HP 8410B Microwave Network Analyzer. Appl. Note. 1980;221:1–25.

Bobowski J.S., Johnson T. Permittivity Measurements of Biological Samples by an Open-Ended Coaxial Line. Prog. Electromagn. Res. 2012;40:159–183. doi: 10.2528/PIERB12022906. DOI

Peyman A., Holden S.J., Watts S., Perrott R., Gabriel C. Dielectric Properties of Porcine Cerebrospinal Tissues at Microwave Frequencies: In Vivo, in Vitro and Systematic Variation with Age. Phys. Med. Biol. 2007;52:2229–2245. doi: 10.1088/0031-9155/52/8/013. PubMed DOI

Smith P.H. Transmission Line Calculator. Electronics. 1939;12:29–31.

Kaatze U. Complex Permittivity of Water as a Function of Frequency and Temperature. J. Chem. Eng. Data. 1989;34:371–374. doi: 10.1021/je00058a001. DOI

Anderson J.M., Sibbald C.L., Stuchly S.S. Dielectric Measurements Using a Rational Function Model. IEEE Trans. Microw. Theory Tech. 1994;42:199–204. doi: 10.1109/22.275247. DOI

De Langhe P., Blomme K., Martens L., De Zutter D. Measurement of Low-Permittivity Materials Based on a Spectral-Domain Analysis for the Open-Ended Coaxial Probe. IEEE Trans. Instrum. Meas. 1993;42:879–886. doi: 10.1109/19.252521. DOI

Peyman A., Gabriel C., Grant E.H., Vermeeren G., Martens L. Variation of the Dielectric Properties of Tissues with Age: The Effect on the Values of SAR in Children When Exposed to Walkie-Talkie Devices. Phys. Med. Biol. 2009;54:227–241. doi: 10.1088/0031-9155/54/2/004. PubMed DOI

Salahuddin S., Porter E., Meaney P.M., O’Halloran M. Effect of Logarithmic and Linear Frequency Scales on Parametric Modelling of Tissue Dielectric Data. Biomed. Phys. Eng. Express. 2017;3:1–11. doi: 10.1088/2057-1976/aa59db. PubMed DOI PMC

Kraszewski A., Stuchly M.A., Stuchly S.S. ANA Calibration Method for Measurements of Dielectric Properties. IEEE Trans. Instrum. Meas. 1983;32:385–387. doi: 10.1109/TIM.1983.4315084. DOI

Buchner R., Hefter G.T., May M.P. Dielectric Relaxation of Aqueous NaCl Solutions. J. Phys. Chem. 1999;103:1–9. doi: 10.1021/jp982977k. DOI

Wei Y.Z., Sridhar S. Radiation-Corrected Open-Ended Coax Line Technique for Dielectric Measurements of Liquids up to 20 GHZ. IEEE Trans. Microw. Theory Tech. 1991;39:526–531. doi: 10.1109/22.75296. DOI

Gregory A.P., Clarke R.N. Tables of the Complex Permittivity of Dielectric Reference Liquids at Frequencies up to 5 GHz. National Physical Laboratory; Teddington, UK: 2012. NPL Report MAT 23.

Peyman A., Gabriel C., Grant E.H. Complex Permittivity of Sodium Chloride Solutions at Microwave Frequencies. Bioelectromagnetics. 2007;28:264–274. doi: 10.1002/bem.20271. PubMed DOI

Jordan B.P., Sheppard R.J., Szwarnowski S. The Dielectric Properties of Formamide, Ethanediol and Methanol. J. Phys. D Appl. Phys. 1978;11:695–701. doi: 10.1088/0022-3727/11/5/013. DOI

Barthel J., Buchner R. High Frequency Permittivity and Its Use in the Investigation of Solution Properties. Pure Appl. Chem. 1991;63:1473–1482. doi: 10.1351/pac199163101473. DOI

Stogryn A. Equations for Calculating the Dielectric Constant of Saline Water. IEEE Trans. Microw. Theory Tech. 1971;19:733–736. doi: 10.1109/TMTT.1971.1127617. DOI

Nortemann K., Hilland J., Kaatze U. Dielectric Properties of Aqueous NaCl Solutions at Microwave Frequencies. J. Phys. Chem. A. 1997;101:6864–6869. doi: 10.1021/jp971623a. DOI

Lamkaouchi K., Balana A., Delbos G., Ellison W.J. Permittivity Measurements of Lossy Liquids in the Range 26-110 GHz. Meas. Sci. Technol. 2003;14:444–450. doi: 10.1088/0957-0233/14/4/307. DOI

Kaatze U., Pottel R., Schaefer M. Dielectric Spectrum of Dimethyl Sulfoxide/Water Mixtures as a Function of Composition. J. Phys. Chem. 1989;93:5623–5627. doi: 10.1021/j100351a057. DOI

Vij J.K., Grochulski T., Kocot A., Hufnagel F. Complex Permittivity Measurements of Acetone in the Frequency Region 50–310 GHz. Mol. Phys. 1991;72:353–361. doi: 10.1080/00268979100100281. DOI

Gregory A.P., Clarke R.N. Dielectric Metrology with Coaxial Sensors. Meas. Sci. Technol. 2007;18:1372–1386. doi: 10.1088/0957-0233/18/5/026. DOI

Peyman A., Rezazadeh A., Gabriel C. Changes in the Dielectric Properties of Rat Tissue as a Function of Age at Microwave Frequencies. Phys. Med. Biol. 2001;46:1617–1629. doi: 10.1088/0031-9155/46/6/303. PubMed DOI

Chen G., Li K., Ji Z. Bilayered Dielectric Measurement With an Open-Ended Coaxial Probe. IEEE Trans. Microw. Theory Tech. 1994;42:966–971. doi: 10.1109/22.293564. DOI

Huclova S., Baumann D., Talary M., Fröhlich J. Sensitivity and Specificity Analysis of Fringing-Field Dielectric Spectroscopy Applied to a Multi-Layer System Modelling the Human Skin. Phys. Med. Biol. 2011;56:7777–7793. doi: 10.1088/0031-9155/56/24/007. PubMed DOI

Meaney P.M., Golnabi A., Fanning M.W., Geimer S.D., Paulsen K.D. Dielectric Volume Measurements for Biomedical Applications; Proceedings of the 13th International Symposium on Antenna Technology and Applied Electromagnetics and the Canadian Radio Sciences Meeting; Toronto, ON, Canada. 15–18 February 2009.

Johnson C.C., Guy A.W. Nonionizing Electromagnetic Wave Effects in Biological Materials and Systems. Proc. IEEE. 1972;60:692–718. doi: 10.1109/PROC.1972.8728. DOI

Shahzad A., Sonja K., Jones M., Dwyer R.M., O’Halloran M. Investigation of the Effect of Dehydration on Tissue Dielectric Properties in Ex Vivo Measurements. Biomed. Phys. Eng. Express. 2017;3:1–9. doi: 10.1088/2057-1976/aa74c4. DOI

Farrugia L., Wismayer P.S., Mangion L.Z., Sammut C.V. Accurate in Vivo Dielectric Properties of Liver from 500 MHz to 40 GHz and Their Correlation to Ex Vivo Measurements. Electromagn. Biol. Med. 2016;8378:1–9. doi: 10.3109/15368378.2015.1120221. PubMed DOI

Nopp P., Rapp E., Pfützner H., Nakesch H., Ruhsam C. Dielectric Properties of Lung Tissue as a Function of Air Content. Phys. Med. Biol. 1993;38:699–716. doi: 10.1088/0031-9155/38/6/005. PubMed DOI

Gabriel C., Peyman A., Grant E.H. Electrical Conductivity of Tissue at Frequencies below 1 MHz. Phys. Med. Biol. 2009;54:4863–4878. doi: 10.1088/0031-9155/54/16/002. PubMed DOI

Haemmerich D., Ozkan R., Tungjitkusolmun S., Tsai J.Z., Mahvi D., Staelin S.T., Webster J.G. Changes in Electrical Resistivity of Swine Liver after Occlusion and Postmortem. Med. Biol. Eng. Comput. 2002;40:29–33. doi: 10.1007/BF02347692. PubMed DOI

Ranck J.B., Bement S.L. The Specific Impedance of the Dorsal Columns of Cat: An Anisotropic Medium. Exp. Neurol. 1965;11:451–463. doi: 10.1016/0014-4886(65)90059-2. PubMed DOI

Hart F.X., Dunfee W.R. In Vivo Measurement of the Low-Frequency Dielectric Spectra of Frog Skeletal Muscle. Phys. Med. Biol. 1993;38:1099–1112. doi: 10.1088/0031-9155/38/8/008. PubMed DOI

Lopresto V., Pinto R., Farina L., Cavagnaro M. Treatment Planning in Microwave Thermal Ablation: Clinical Gaps and Recent Research Advances. Int. J. Hyperth. 2017;33:83–100. doi: 10.1080/02656736.2016.1214883. PubMed DOI

Young B., Woodford P., O’Dowd G. Wheater’s Functional Histology: A Text and Colour Atlas. 6th ed. Elsevier Health Sciences; London, UK: 2013.

Cross S.S. Grading and Scoring in Histopathology. Histopathology. 1998;33:99–106. doi: 10.1046/j.1365-2559.1998.00495.x. PubMed DOI

Veta M., Pluim J.P.W., Van Diest P.J., Viergever M.A. Breast Cancer Histopathology Image Analysis: A Review. IEEE Trans. Biomed. Eng. 2014;61:1400–1411. doi: 10.1109/TBME.2014.2303852. PubMed DOI

National Health Service (NHS) Pathology. National Health Service (NHS); London, UK: 2016.

Verkooijen H.M., Peterse J.L., Schipper M.E.I., Buskens E., Hendriks J.H.C.L., Pijnappel R.M., Peeters P.H.M., Borel Rinkes I.H.M., Mali W.P.T.M., Holland R. Interobserver Variability between General and Expert Pathologists during the Histopathological Assessment of Large-Core Needle and Open Biopsies of Non-Palpable Breast Lesions. Eur. J. Cancer. 2003;39:2187–2191. doi: 10.1016/S0959-8049(03)00540-9. PubMed DOI

Gomes D.S., Porto S.S., Balabram D., Gobbi H. Inter-Observer Variability between General Pathologists and a Specialist in Breast Pathology in the Diagnosis of Lobular Neoplasia, Columnar Cell Lesions, Atypical Ductal Hyperplasia and Ductal Carcinoma in Situ of the Breast. Diagn. Pathol. 2014;9:121. doi: 10.1186/1746-1596-9-121. PubMed DOI PMC

Gage J.C., Schiffman M., Hunt W.C., Joste N., Ghosh A., Wentzensen N., Wheeler C.M. Cervical Histopathology Variability among Laboratories: A Population-Based Statewide Investigation. Am. J. Clin. Pathol. 2013;139:330–335. doi: 10.1309/AJCPSD3ZXJXP7NNB. PubMed DOI PMC

Bruggeman D.A.G. Berechnung Verschiedener Physikalischer Konstanten von Heterogenen Substanzen. 1. Dielektizitatskonstanten Und Leitfahigkeiten Der Mischkorper Aus Isotropen Substanzen. Ann. Phys. 1935;24:636–679. doi: 10.1002/andp.19354160705. DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...