Open-Ended Coaxial Probe Technique for Dielectric Measurement of Biological Tissues: Challenges and Common Practices
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články, přehledy
PubMed
29874833
PubMed Central
PMC6023382
DOI
10.3390/diagnostics8020040
PII: diagnostics8020040
Knihovny.cz E-zdroje
- Klíčová slova
- biological tissues, dielectric measurements, equipment-related confounders, open-ended coaxial probe, tissue-related confounders,
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
Electromagnetic (EM) medical technologies are rapidly expanding worldwide for both diagnostics and therapeutics. As these technologies are low-cost and minimally invasive, they have been the focus of significant research efforts in recent years. Such technologies are often based on the assumption that there is a contrast in the dielectric properties of different tissue types or that the properties of particular tissues fall within a defined range. Thus, accurate knowledge of the dielectric properties of biological tissues is fundamental to EM medical technologies. Over the past decades, numerous studies were conducted to expand the dielectric repository of biological tissues. However, dielectric data is not yet available for every tissue type and at every temperature and frequency. For this reason, dielectric measurements may be performed by researchers who are not specialists in the acquisition of tissue dielectric properties. To this end, this paper reviews the tissue dielectric measurement process performed with an open-ended coaxial probe. Given the high number of factors, including equipment- and tissue-related confounders, that can increase the measurement uncertainty or introduce errors into the tissue dielectric data, this work discusses each step of the coaxial probe measurement procedure, highlighting common practices, challenges, and techniques for controlling and compensating for confounders.
Zobrazit více v PubMed
Formica D., Silvestri S. Biological Effects of Exposure to Magnetic Resonance Imaging: An Overview. Biomed. Eng. Online. 2004;3:11. doi: 10.1186/1475-925X-3-11. PubMed DOI PMC
Martellosio A., Pasian M., Bozzi M., Perregrini L., Mazzanti A. Exposure Limits and Dielectric Contrast for Breast Cancer Tissues: Experimental Results up to 50 GHz; Proceedings of the 11th European Conference on Antennas and Propagation (EUCAP); Paris, France. 19–24 March 2017; pp. 667–671.
Nikolova N.K. Microwave Imaging for Breast Cancer. IEEE Microw. Mag. 2011;12:78–94. doi: 10.1109/MMM.2011.942702. DOI
Pastorino M. Microwave Imaging. John Wiley & Sons; Hoboken, NJ, USA: 2010.
Noghanian S. Introduction to Microwave Imaging. Springer; New York, NY, USA: 2014.
Zou Y., Guo Z. A Review of Electrical Impedance Techniques for Breast Cancer Detection. Med. Eng. Phys. 2003;25:79–90. doi: 10.1016/S1350-4533(02)00194-7. PubMed DOI
Brown B. Electrical Impedance Tomography (EIT): A Review. J. Med. Eng. Technol. 2003;27:97–108. doi: 10.1080/0309190021000059687. PubMed DOI
Waldmann A.D., Ortola C.F., Martinez M.M., Vidal A., Santos A., Marquez M.P., Roka P.L., Bohm S.H., Suarez-Sipmann F. Position-Dependent Distribution of Lung Ventilation—A Feasability Study; Proceedings of the 2015 IEEE Sensors Applications Symposium (SAS); Zadar, Croatia. 13–15 April 2015.
Avery J., Dowrick T., Faulkner M., Goren N., Holder D. A Versatile and Reproducible Multi-Frequency Electrical Impedance Tomography System. Sensors. 2017;17:280. doi: 10.3390/s17020280. PubMed DOI PMC
Halter R.J., Zhou T., Meaney P.M., Hartov A., Barth R.J., Rosenkranz K.M., Wells W.A., Kogel C.A., Borsic A., Rizzo E.J., et al. The Correlation of in Vivo and Ex Vivo Tissue Dielectric Properties to Validate Electromagnetic Breast Imaging: Initial Clinical Experience. Physiol. Meas. 2009;30:S121–S136. doi: 10.1088/0967-3334/30/6/S08. PubMed DOI PMC
Lazebnik M., McCartney L., Popovic D., Watkins C.B., Lindstrom M.J., Harter J., Sewall S., Magliocco A., Booske J.H., Okoniewski M., et al. A Large-Scale Study of the Ultrawideband Microwave Dielectric Properties of Normal Breast Tissue Obtained from Reduction Surgeries. Phys. Med. Biol. 2007;52:2637–2656. doi: 10.1088/0031-9155/52/10/001. PubMed DOI
Sugitani T., Kubota S., Kuroki S., Sogo K., Arihiro K., Okada M., Kadoya T., Hide M., Oda M., Kikkawa T. Complex Permittivities of Breast Tumor Tissues Obtained from Cancer Surgeries. Appl. Phys. Lett. 2014;104:253702. doi: 10.1063/1.4885087. DOI
Porter E., Kirshin E., Santorelli A., Coates M., Popović M. Time-Domain Multistatic Radar System for Microwave Breast Screening. IEEE Antennas Wirel. Propag. Lett. 2013;12:229–232. doi: 10.1109/LAWP.2013.2247374. DOI
Scapaticci R., Bellizzi G., Catapano I., Crocco L., Bucci O.M. An Effective Procedure for MNP-Enhanced Breast Cancer Microwave Imaging. IEEE Trans. Biomed. Eng. 2014;61:1071–1079. doi: 10.1109/TBME.2013.2293839. PubMed DOI
O’Halloran M., Morgan F., Flores-Tapia D., Byrne D., Glavin M., Jones E. Prototype Ultra Wideband Radar System for Bladder Monitoring Applications. Prog. Electromagn. Res. C. 2012;33:17–28. doi: 10.2528/PIERC12080805. DOI
Arunachalam K., MacCarini P., De Luca V., Tognolatti P., Bardati F., Snow B., Stauffer P. Detection of Vesicoureteral Reflux Using Microwave Radiometrysystem Characterization with Tissue Phantoms. IEEE Trans. Biomed. Eng. 2011;58:1629–1636. doi: 10.1109/TBME.2011.2107515. PubMed DOI PMC
Ireland D., Bialkowski M.E. Microwave Head Imaging for Stroke Detection. Prog. Electromagn. Res. M. 2011;21:163–175. doi: 10.2528/PIERM11082907. DOI
Persson M., Fhager A., Trefna H.D., Yu Y., McKelvey T., Pegenius G., Karlsson J.E., Elam M. Microwave-Based Stroke Diagnosis Making Global Prehospital Thrombolytic Treatment Possible. IEEE Trans. Biomed. Eng. 2014;61:2806–2817. doi: 10.1109/TBME.2014.2330554. PubMed DOI
Dowrick T., Blochet C., Holder D. In Vivo Bioimpedance Measurement of Healthy and Ischaemic Rat Brain: Implications for Stroke Imaging Using Electrical Impedance Tomography. Physiol. Meas. 2015;36:1273–1282. doi: 10.1088/0967-3334/36/6/1273. PubMed DOI
Scapaticci R., Bucci O.M., Catapano I., Crocco L. Differential Microwave Imaging for Brain Stroke Followup. Int. J. Antennas Propag. 2014 doi: 10.1155/2014/312528. DOI
Datta N.R., Ordóñez S.G., Gaipl U.S., Paulides M.M., Crezee H., Gellermann J., Marder D., Puric E., Bodis S. Local Hyperthermia Combined with Radiotherapy And-/or Chemotherapy: Recent Advances and Promises for the Future. Cancer Treat. Rev. 2015;41:742–753. doi: 10.1016/j.ctrv.2015.05.009. PubMed DOI
Issels R.D., Lindner L.H., Ghadjar P., Reichardt P., Hohenberger P., Verweij J., Abdel-Rahman S., Daugaard S., Salat C., Vujaskovic Z., et al. 13LBA Improved Overall Survival by Adding Regional Hyperthermia to Neo-Adjuvant Chemotherapy in Patients with Localized High-Risk Soft Tissue Sarcoma (HR-STS): Long-Term Outcomes of the EORTC 62961/ESHO Randomized Phase III Study. Eur. J. Cancer. 2015;51:S716. doi: 10.1016/S0959-8049(15)30071-X. DOI
Wessalowski R., Schneider D.T., Mils O., Friemann V., Kyrillopoulou O., Schaper J., Matuschek C., Rothe K., Leuschner I., Willers R., et al. Regional Deep Hyperthermia for Salvage Treatment of Children and Adolescents with Refractory or Recurrent Non-Testicular Malignant Germ-Cell Tumours: An Open-Label, Non-Randomised, Single-Institution, Phase 2 Study. Lancet Oncol. 2013;14:843–852. doi: 10.1016/S1470-2045(13)70271-7. PubMed DOI
Ekstrand V., Wiksell H., Schultz I., Sandstedt B., Rotstein S., Eriksson A. Influence of Electrical and Thermal Properties on RF Ablation of Breast Cancer: Is the Tumour Preferentially Heated? Biomed. Eng. Online. 2005;4 doi: 10.1186/1475-925X-4-41. PubMed DOI PMC
Bargellini I., Bozzi E., Cioni R., Parentini B., Bartolozzi C. Radiofrequency Ablation of Lung Tumours. Insights Imaging. 2011;2:567–576. doi: 10.1007/s13244-011-0110-7. PubMed DOI PMC
Curley S.A., Marra P., Beaty K., Ellis L.M., Vauthey J.N., Abdalla E.K., Scaife C., Raut C., Wolff R., Choi H., et al. Early and Late Complications after Radiofrequency Ablation of Malignant Liver Tumors in 608 Patients. Ann. Surg. 2004;239:450–458. doi: 10.1097/01.sla.0000118373.31781.f2. PubMed DOI PMC
Stauffer P.R., Rossetto F., Prakash M., Neuman D.G., Lee T. Phantom and Animal Tissues for Modelling the Electrical Properties of Human Liver. Int. J. Hyperth. 2003;19:89–101. doi: 10.1080/0265673021000017064. PubMed DOI
Yang D., Converse M., Mahvi D., Webster J. Measurement and Analysis of Tissue Temperature during Microwave Liver Ablation. IEEE Trans. Biomed. Eng. 2007;54:150–155. doi: 10.1109/TBME.2006.884647. PubMed DOI
Lopresto V., Pinto R., Lovisolo G., Cavagnaro M. Changes in the Dielectric Properties of Ex Vivo Bovine Liver during Microwave Thermal Ablation at 2.45 GHz. Phys. Med. Biol. 2012;57:2309–2327. doi: 10.1088/0031-9155/57/8/2309. PubMed DOI
Lazebnik M., Converse M., Booske J.H., Hagness S.C. Ultrawideband Temperature-Dependent Dielectric Properties of Animal Liver Tissue in the Microwave Frequency Range. Phys. Med. Biol. 2006;51:1941–1955. doi: 10.1088/0031-9155/51/7/022. PubMed DOI
Brace C.L. Temperature-Dependent Dielectric Properties of Liver Tissue Measured during Thermal Ablation: Toward an Improved Numerical Model; Proceedings of the IEEE Engineering in Medicine and Biology Society; Vancouver, BC, Canada. 20–25 August 2008; pp. 230–233. PubMed
Wust P., Hildebrandt B., Sreenivasa G., Rau B., Gellermann J., Riess H., Felix R., Schlag P.M. Hyperthermia in Combined Treatment of Cancer. Lancet Oncol. 2002;3:487–497. doi: 10.1016/S1470-2045(02)00818-5. PubMed DOI
Ahmed M., Brace C.L., Lee F.T., Goldberg S.N. Principles of and Advances in Percutaneous Ablation. Radiology. 2011;258:351–369. doi: 10.1148/radiol.10081634. PubMed DOI PMC
Dupuy D.E. Image-Guided Thermal Ablation of Lung Malignancies. Radiology. 2011;260:633–655. doi: 10.1148/radiol.11091126. PubMed DOI
Ji Z., Brace C.L. Expanded Modeling of Temperature-Dependent Dielectric Properties for Microwave Thermal Ablation. Phys. Med. Biol. 2011;56:5249–5264. doi: 10.1088/0031-9155/56/16/011. PubMed DOI PMC
Cavagnaro M., Pinto R., Lopresto V. Numerical Models to Evaluate the Temperature Increase Induced by Ex Vivo Microwave Thermal Ablation. Phys. Med. Biol. 2015;60:3287–3311. doi: 10.1088/0031-9155/60/8/3287. PubMed DOI
O’Rourke A.P., Lazebnik M., Bertram J.M., Converse M.C., Hagness S.C., Webster J.G., Mahvi D.M. Dielectric Properties of Human Normal, Malignant and Cirrhotic Liver Tissue: In Vivo and Ex Vivo Measurements from 0.5 to 20 GHz Using a Precision Open-Ended Coaxial Probe. Phys. Med. Biol. 2007;52:4707–4719. doi: 10.1088/0031-9155/52/15/022. PubMed DOI
Stuchly M.A., Athey T.W., Samaras G.M., Taylor G.E. Measurement of Radio Frequency Permittivity of Biological Tissues with an Open-Ended Coaxial Line: Part II—Experimental Results. IEEE Trans. Microw. Theory Tech. 1982;30:87–92. doi: 10.1109/TMTT.1982.1131022. DOI
Burdette E., Cain F., Seals J. In Vivo Probe Measurement Technique for Determining Dielectric Properties at VHF through Microwave Frequencies. IEEE Trans. Microw. Theory Tech. 1980;28:414–427. doi: 10.1109/TMTT.1980.1130087. DOI
Kraszewski A., Stuchly M.A., Stuchly S.S., Smith A.M. In Vivo and in Vitro Dielectric Properties of Animal Tissues at Radio Frequencies. Bioelectromagnetics. 1982;3:421–432. doi: 10.1002/bem.2250030405. PubMed DOI
Schwartz J.L., Mealing G.A. Dielectric Properties of Frog Tissues in Vivo and in Vitro. Phys. Med. Biol. 1985;30:117–124. doi: 10.1088/0031-9155/30/2/001. PubMed DOI
Gabriel S., Lau R.W., Gabriel C. The Dielectric Properties of Biological Tissues: II. Measurements in the Frequency Range 10 Hz to 20 GHz. Phys. Med. Biol. 1996;41:2251–2269. doi: 10.1088/0031-9155/41/11/002. PubMed DOI
Peyman A., Holden S., Gabriel C. Mobile Telecommunications and Health Research Programme: Dielectric Properties of Tissues at Microwave Frequencies. Microwave Consultants Limited; London, UK: 2005.
Abdilla L., Sammut C., Mangion L. Dielectric Properties of Muscle and Liver from 500 MHz–40 GHz. Electromagn. Biol. Med. 2013;32:244–252. doi: 10.3109/15368378.2013.776436. PubMed DOI
Schwan H.P., Foster K.R. RF Field Interactions with Biological Systems: Electrical Properties and Biophysical Mechanisms. Proc. IEEE. 1980;68:104–113. doi: 10.1109/PROC.1980.11589. DOI
Foster K., Schwan H. Dielectric Properties of Tissues and Biological Materials: A Critical Review. Crit. Rev. Biomed. Eng. 1989;17:25–104. PubMed
Gabriel S., Lau R.W., Gabriel C. The Dielectric Properties of Biological Tissues: III. Parametric Models for the Dielectric Spectrum of Tissues. Phys. Med. Biol. 1996;41:2271–2293. doi: 10.1088/0031-9155/41/11/003. PubMed DOI
Gregory A., Clarke R., Hodgetts T., Symm G. RF and Microwave Dielectric Measurements upon Layered Materials Using Coaxial Sensors. National Physical Laboratory; Teddington, UK: 2008. NPL Report MAT 13.
Gulich R., Köhler M., Lunkenheimer P., Loidl A. Dielectric Spectroscopy on Aqueous Electrolytic Solutions. Radiat. Environ. Biophys. 2009;48:107–114. doi: 10.1007/s00411-008-0195-7. PubMed DOI
England T.S., Sharples N.A.A. Dielectric Properties of the Human Body in the Microwave Region of the Spectrum. Nature. 1949;163:487–488. doi: 10.1038/163487b0. PubMed DOI
Cook H.F. The Dielectric Behaviour of Some Types of Human Tissues at Microwave Frequencies. Br. J. Appl. Phys. 1951;2:295–300. doi: 10.1088/0508-3443/2/10/304. DOI
Schwan H.P. Electrical Properties of Tissue and Cell Suspensions. Adv. Biol. Med. Phys. 1957;5:147–209. doi: 10.1016/B978-1-4832-3111-2.50008-0. PubMed DOI
Schwan H.P., Li K. Capacity and Conductivity of Body Tissues at Ultrahigh Frequencies. Proc. IRE. 1953;41:1735–1740. doi: 10.1109/JRPROC.1953.274358. DOI
Stuchly M.A., Stuchly S.S. Dielectric Properties of Biological Substances—Tabulated. J. Microw. Power. 1980;15:19–25. doi: 10.1080/16070658.1980.11689181. DOI
Burdette E.C., Friederich P.G., Seaman R.L., Larsen L.E. In Situ Permittivity of Canine Brain: Regional Variations and Postmortem Changes. IEEE Trans. Microw. Theory Tech. 1986;34:38–50. doi: 10.1109/TMTT.1986.1133278. DOI
Smith S.R., Foster K.R. Dielectric Properties of Low-Water-Content Tissues. Phys. Med. Biol. 1985;30:965–973. doi: 10.1088/0031-9155/30/9/008. PubMed DOI
Zhadobov M., Augustine R., Sauleau R., Alekseev S., Di Paola A., Le Quément C., Mahamoud Y.S., Le Dréan Y. Complex Permittivity of Representative Biological Solutions in the 2–67 GHz Range. Bioelectromagnetics. 2012;33:346–355. doi: 10.1002/bem.20713. PubMed DOI
Di Meo S., Martellosio A., Pasian M., Bozzi M., Perregrini L., Mazzanti A., Svelto F., Summers P., Renne G., Preda L., et al. Experimental Validation of the Dielectric Permittivity of Breast Cancer Tissues up to 50 GHz; Proceedings of the IEEE MTT-S International Microwave Workshop Advanced Materials and Processes for RF and THz Applications (IMWS-AMP); Pavia, Italy. 20–22 September 2017; pp. 20–22.
Stuchly M.A., Stuchly S.S. Coaxial Line Reflection Methods for Measuring Dielectric Properties of Biological Substances at Radio and Microwave Frequencies-A Review. IEEE Trans. Instrum. Meas. 1980;29:176–183. doi: 10.1109/TIM.1980.4314902. DOI
Athey T.W., Stuchly M.A., Stuchly S.S. Measurement of Radio Frequency Permittivity of Biological Tissues with an Open-Ended Coaxial Line: Part I. IEEE Trans. Microw. Theory Tech. 1982;30:82–86. doi: 10.1109/TMTT.1982.1131021. DOI
Gabriel C., Grant E.H., Young I.R. Use of Time Domain Spectroscopy for Measuring Dielectric Properties with a Coaxial Probe. J. Phys. E. 1986;19:843–846. doi: 10.1088/0022-3735/19/10/016. DOI
Foster K.R., Schepps J.L., Stoy R.D., Schwan H.P. Dielectric Properties of Brain Tissue between 0.01 and 10 GHz. Phys. Med. Biol. 1979;24:1177–1187. doi: 10.1088/0031-9155/24/6/008. PubMed DOI
Surowiec A., Stuchly S.S., Eidus L., Swarup A. In Vitro Dielectric Properties of Human Tissues at Radiofrequencies. Phys. Med. Biol. 1987;32:615. doi: 10.1088/0031-9155/32/5/007. PubMed DOI
Pethig R. Dielectric Properties of Biological Materials: Biophysical and Medical Applications. IEEE Trans. Electr. Insul. 1984;EI-19:453–474. doi: 10.1109/TEI.1984.298769. DOI
Schepps J.L., Foster K.R. The UHF and Microwave Dielectric Properties of Normal and Tumour Tissues: Variation in Dielectric Properties with Tissue Water Content. Phys. Med. Biol. 1980;25:1149. doi: 10.1088/0031-9155/25/6/012. PubMed DOI
Gabriel C., Gabriel S., Corthout E. The Dielectric Properties of Biological Tissues: I. Literature Survey. Phys. Med. Biol. 1996;41:2231–2249. doi: 10.1088/0031-9155/41/11/001. PubMed DOI
Gabriel C. Compilation of the Dielectric Properties of Body Tissues at RF and Microwave Frequencies. Occupational and Environmental Health Directorate, Radiofrequency Radiation Division; Brooks Air Force Base, TX, USA: 1996. Report N.AL/OE-TR-1996-0037.
Federal Communications Commission . Tissue Dielectric Properties. FCC; Washington, DC, USA: 2008. [(accessed on 30 October 2017)]. Available online: https://www.fcc.gov/general/body-tissue-dielectric-parameters.
Andreuccetti D., Fossi R., Petrucci C. An Internet Resource for the Calculation of the Dielectric Properties of Body Tissues in the Frequency Range 10 Hz–100 GHz. IFAC-CNR; Florence, Italy: 1997. [(accessed on 4 June 2018)]. Available online: http://niremf.ifac.cnr.it/tissprop/
Alanen E., Lahtinen T., Nuutinen J. Variational Formulation of Open-Ended Coaxial Line in Contact with Layered Biological Medium. IEEE Trans. Biomed. Eng. 1998;45:1241–1248. doi: 10.1109/10.720202. PubMed DOI
Hagl D., Popovic D., Hagness S.C., Booske J.H., Okoniewski M. Sensing Volume of Open-Ended Coaxial Probes for Dielectric Characterization of Breast Tissue at Microwave Frequencies. IEEE Trans. Microw. Theory Tech. 2003;51:1194–1206. doi: 10.1109/TMTT.2003.809626. DOI
Popovic D., Okoniewski M., Hagl D., Booske J.H., Hagness S.C. Volume Sensing Properties of Open Ended Coaxial Probes for Dielectric Spectroscopy of Breast Tissue; Proceedings of the IEEE Antennas and Propagation Society; Boston, MA, USA. 8–13 July 2001; pp. 254–257.
Popovic D., McCartney L., Beasley C., Lazebnik M., Okoniewski M., Hagness S.C., Booske J.H. Precision Open-Ended Coaxial Probes for in Vivo and Ex Vivo Dielectric Spectroscopy of Biological Tissues at Microwave Frequencies. IEEE Trans. Microw. Theory Tech. 2005;53:1713–1721. doi: 10.1109/TMTT.2005.847111. DOI
Taylor B.N., Kuyatt C.E. Guidelines for Evaluating and Expressing the Uncertainty of NIST Measurement Results. US Department of Commerce, Technology Administration, National Institute of Standards and Technology; Gaithersburg, MD, USA: 1994. NIST Technical Note 1297.
Gabriel C., Peyman A. Dielectric Measurement: Error Analysis and Assessment of Uncertainty. Phys. Med. Biol. 2006;51:6033–6046. doi: 10.1088/0031-9155/51/23/006. PubMed DOI
Lazebnik M., Popovic D., McCartney L., Watkins C.B., Lindstrom M.J., Harter J., Sewall S., Ogilvie T., Magliocco A., Breslin T.M., et al. A Large-Scale Study of the Ultrawideband Microwave Dielectric Properties of Normal, Benign and Malignant Breast Tissues Obtained from Cancer Surgeries. Phys. Med. Biol. 2007;52:6093–6115. doi: 10.1088/0031-9155/52/20/002. PubMed DOI
Chaudhary S.S., Mishra R.K., Swarup A., Thomas J.M. Dielectric Properties of Normal & Malignant Human Breast Tissues at Radiowave & Microwave Frequencies. Indian J. Biochem. Biophys. 1984;21:76–79. PubMed
Joines W.T., Zhang Y., Li C., Jirtle R.L. The Measured Electrical Properties of Normal and Malignant Human Tissues from 50 to 900 MHz. Med. Phys. 1994;21:547–550. doi: 10.1118/1.597312. PubMed DOI
Martellosio A., Pasian M., Bozzi M., Perregrini L., Mazzanti A., Svelto F., Summers P.E., Renne G., Preda L., Bellomi M. Dielectric Properties Characterization from 0.5 to 50 GHz of Breast Cancer Tissues. IEEE Trans. Microw. Theory Tech. 2017;65:998–1011. doi: 10.1109/TMTT.2016.2631162. DOI
Meaney P.M., Gregory A., Epstein N., Paulsen K.D. Microwave Open-Ended Coaxial Dielectric Probe: Interpretation of the Sensing Volume Re-Visited. BMC Med. Phys. 2014;14:1–11. doi: 10.1186/1756-6649-14-3. PubMed DOI PMC
Meaney P.M., Gregory A.P., Seppälä J., Lahtinen T. Open-Ended Coaxial Dielectric Probe Effective Penetration Depth Determination. IEEE Trans. Microw. Theory Tech. 2016;64:915–923. doi: 10.1109/TMTT.2016.2519027. PubMed DOI PMC
Porter E., La Gioia A., Santorelli A., O’Halloran M. Modeling of the Dielectric Properties of Biological Tissues within the Histology Region. IEEE Trans. Dielectr. Electr. Insul. 2017;24:3290–3301. doi: 10.1109/TDEI.2017.006690. DOI
Porter E., O’Halloran M. Investigation of Histology Region in Dielectric Measurements of Heterogeneous Tissues. IEEE Trans. Dielectr. Electr. Insul. 2017;65:5541–5552. doi: 10.1109/TAP.2017.2741026. DOI
Peyman A., Kos B., Djokić M., Trotovšek B., Limbaeck-Stokin C., Serša G., Miklavčič D. Variation in Dielectric Properties Due to Pathological Changes in Human Liver. Bioelectromagnetics. 2015;36:603–612. doi: 10.1002/bem.21939. PubMed DOI
Sugitani T., Arihiro K., Kikkawa T. Comparative Study on Dielectric Constants and Conductivities of Invasive Ductal Carcinoma Tissues. IEEE Eng. Med. Biol. Soc. 2015:4387–4390. doi: 10.1109/EMBC.2015.7319367. PubMed DOI
Sabouni A., Hahn C., Noghanian S., Sauter E., Weiland T. Study of the Effects of Changing Physiological Conditions on Dielectric Properties of Breast Tissues. ISRN Biomed. Imaging. 2013;2013:894153. doi: 10.1155/2013/894153. DOI
Reinecke T., Hagemeier L., Schulte V., Klintschar M., Zimmermann S. Quantification of Edema in Human Brain Tissue by Determination of Electromagnetic Parameters; Proceedings of the IEEE Sensors; Baltimore, MD, USA. 3–6 November 2013; pp. 1–4.
Nicolson A., Ross G.F. Measurement of the Intrinsic Properties of Materials by Time-Domain Techniques. IEEE Trans. Instrum. Meas. 1970;19:377–382. doi: 10.1109/TIM.1970.4313932. DOI
Weir W.B. Automatic Measurement of Complex Dielectric Constant and Permeability. Proc. IEEE. 1974;62:33–36. doi: 10.1109/PROC.1974.9382. DOI
Baker-Jarvis J., Vanzura E.J., Kissick W.A. Improved Technique for Determining Complex Permittivity with the Transmission/Reflection Method. IEEE Trans. Microw. Theory Tech. 1990;38:1096–1103. doi: 10.1109/22.57336. DOI
Kim S., Baker-Jarvis J. An Approximate Approach To Determining the Permittivity and Permeability near λ/2 Resonances in Transmission/Reflection Measurements. Prog. Electromagn. Res. B. 2014;58:95–109. doi: 10.2528/PIERB13121308. DOI
Boughriet A.H., Legrand C., Chapoton A. Noniterative Stable Transmission/Reflection Method for Low-Loss Material Complex Permittivity Determination. IEEE Trans. Microw. Theory Tech. 1997;45:52–57. doi: 10.1109/22.552032. DOI
Baker-Jarvis J., Janezic M., Domich P., Geyer R. Analysis of an Open-Ended Coaxial Probe with Lift-off for Non Destructive Testing. IEEE Trans. Instrum. Meas. 1994;43:1–8. doi: 10.1109/19.328897. DOI
Gregory A., Clarke R. A Review of RF and Microwave Techniques for Dielectric Measurements on Polar Liquids. IEEE Trans. Dielectr. Electr. Insul. 2006;13:727–743. doi: 10.1109/TDEI.2006.1667730. DOI
Agilent . Basics of Measuring the Dielectric Properties of Materials. Agilent Technologies; Santa Clara, CA, USA: 2005.
Land D.V., Campbell A.M. A Quick Accurate Method for Measuring the Microwave Dielectric Properties of Small Tissue Samples. Phys. Med. Biol. 1992;37:183. doi: 10.1088/0031-9155/37/1/013. PubMed DOI
Campbell A., Land D.V. Dielectric Properties of Female Human Breast Tissue Measured in Vitro at 3.2 GHz. Phys. Med. Biol. 1992;37:193–210. doi: 10.1088/0031-9155/37/1/014. PubMed DOI
Peng Z., Hwang J.Y., Andriese M. Maximum Sample Volume for Permittivity Measurements by Cavity Perturbation Technique. IEEE Trans. Instrum. Meas. 2014;63:450–455. doi: 10.1109/TIM.2013.2279496. DOI
Campbell A. Measurements and Analysis of the Microwave Dielectric Properties of Tissues. J. Appl. Phys. 1990;22:95.
Ramos A., Bertemes-Filho P. Numerical Sensitivity Modeling for the Detection of Skin Tumors by Using Tetrapolar Probe. Electromagn. Biol. Med. 2011;30:235–245. doi: 10.3109/15368378.2011.589555. PubMed DOI
Raghavan K., Porterfield J.E., Kottam A.T.G., Feldman M.D., Escobedo D., Valvano J.W., Pearce J.A. Electrical Conductivity and Permittivity of Murine Myocardium. IEEE Trans. Biomed. Eng. 2009;56:2044–2053. doi: 10.1109/TBME.2009.2012401. PubMed DOI
Karki B., Wi H., McEwan A., Kwon H., Oh T.I., Woo E.J., Seo J.K. Evaluation of a Multi-Electrode Bioimpedance Spectroscopy Tensor Probe to Detect the Anisotropic Conductivity Spectra of Biological Tissues. Meas. Sci. Technol. 2014;25:075702. doi: 10.1088/0957-0233/25/7/075702. DOI
Misra D.K. A Quasi-Static Analysis of Open-Ended Coaxial Lines. IEEE Trans. Microw. Theory Tech. 1987;35:925–928. doi: 10.1109/TMTT.1987.1133782. DOI
Grant J.P., Clarke R.N., Symm G.T., Spyron N.M. A Critical Study of the Open-Ended Coaxial-Line Sensor Technique for RF and Microwave Complex Permittivity Measurements. J. Phys. E Sci. Instrum. 1989;22:757–770. doi: 10.1088/0022-3735/22/9/015. DOI
Jenkins S., Preece A.W., Hodgetts T.E., Symm G.T., Warham A.G.P., Clarke R.N. Comparison of Three Numerical Treatments for the Open-Ended Coaxial Line Sensor. Electron. Lett. 1990;26:234–236. doi: 10.1049/el:19900158. DOI
Misra D. On the Measurement of the Complex Permittivity of Materials by an Open-Ended Coaxial Probe. IEEE Microw. Guid. Wave Lett. 1995;5:161–163. doi: 10.1109/75.374085. DOI
Perez Cesaretti M.D. Ph.D. Thesis. University of Bologna; Bologna, Italy: 2012. General Effective Medium Model for the Complex Permittivity Extraction with an Open-Ended Coaxial Probe in Presence of a Multilayer Material under Test.
Keysight Technologies . Keysight E5063A ENA Series Network Analyzer. Keysight Technologies; Santa Clara, CA, USA: 2015.
Gabriel C., Chan T.Y., Grant E.H. Admittance Models for Open Ended Coaxial Probes and Their Place in Dielectric Spectroscopy. Phys. Med. Biol. 1994;39:2183–2200. doi: 10.1088/0031-9155/39/12/004. PubMed DOI
Berube D., Ghannouchi F.M., Savard P. A Comparative Study of Four Open-Ended Coaxial Probe Models for Permittivity Measurements of Lossy Dielectric/Biological Materials at Microwave Frequencies. IEEE Trans. Microw. Theory Tech. 1996;44:1928–1934. doi: 10.1109/22.539951. DOI
Zajíček R., Oppl L., Vrba J. Broadband Measurement of Complex Permitivity Using Reflection Method and Coaxial Probes. Radioengineering. 2008;17:14–19.
Schwan H.P., Foster K.R. Microwave Dielectric Properties of Tissue. Some Comments on the Rotational Mobility of Tissue Water. Biophys. J. 1977;17:193–197. doi: 10.1016/S0006-3495(77)85637-3. PubMed DOI PMC
Peyman A. Dielectric Properties of Tissues; Variation with Structure and Composition; Proceedings of the International Conference on Electromagnetics in Advanced Applications (ICEAA); Torino, Italy. 14–18 September 2009; pp. 863–864.
Popovic D., Okoniewski M. Effects of Mechanical Flaws in Open-Ended Coaxial Probes for Dielectric Spectroscopy. IEEE Microw. Wirel. Components Lett. 2002;12:401–403. doi: 10.1109/LMWC.2002.803192. DOI
Keysight N1501A Dielectric Probe Kit 10 MHz to 50 GHz: Technical Overview. [(accessed on 30 October 2017)];2015 Available online: http://www.Keysight.Com/En/Pd-2492144-Pn-N1501A/Dielectric-Probe-Kit.
Karacolak T., Cooper R., Unlu E.S., Topsakal E. Dielectric Properties of Porcine Skin Tissue and in Vivo Testing of Implantable Antennas Using Pigs as Model Animals. IEEE Antennas Wirel. Propag. Lett. 2012;11:1686–1689. doi: 10.1109/LAWP.2013.2241722. DOI
Nyshadham A., Sibbald C.L., Stuchly S.S. Permittivity Measurements Using Open-Ended Sensors and Reference Liquid Calibration—An Uncertainty Analysis. IEEE Trans. Microw. Theory Tech. 1992;40:305–314. doi: 10.1109/22.120103. DOI
Marsland T.P., Evans S. Dielectric Measurements with an Open-Ended Coaxial Probe. IEE Proc. H Microw. Antennas Propag. 1987;134:341–349. doi: 10.1049/ip-h-2.1987.0068. DOI
Piuzzi E., Merla C., Cannazza G., Zambotti A., Apollonio F., Cataldo A., D’Atanasio P., De Benedetto E., Liberti M. A Comparative Analysis between Customized and Commercial Systems for Complex Permittivity Measurements on Liquid Samples at Microwave Frequencies. IEEE Trans. Instrum. Meas. 2013;62:1034–1046. doi: 10.1109/TIM.2012.2236791. DOI
Packard H. Automating the HP 8410B Microwave Network Analyzer. Appl. Note. 1980;221:1–25.
Bobowski J.S., Johnson T. Permittivity Measurements of Biological Samples by an Open-Ended Coaxial Line. Prog. Electromagn. Res. 2012;40:159–183. doi: 10.2528/PIERB12022906. DOI
Peyman A., Holden S.J., Watts S., Perrott R., Gabriel C. Dielectric Properties of Porcine Cerebrospinal Tissues at Microwave Frequencies: In Vivo, in Vitro and Systematic Variation with Age. Phys. Med. Biol. 2007;52:2229–2245. doi: 10.1088/0031-9155/52/8/013. PubMed DOI
Smith P.H. Transmission Line Calculator. Electronics. 1939;12:29–31.
Kaatze U. Complex Permittivity of Water as a Function of Frequency and Temperature. J. Chem. Eng. Data. 1989;34:371–374. doi: 10.1021/je00058a001. DOI
Anderson J.M., Sibbald C.L., Stuchly S.S. Dielectric Measurements Using a Rational Function Model. IEEE Trans. Microw. Theory Tech. 1994;42:199–204. doi: 10.1109/22.275247. DOI
De Langhe P., Blomme K., Martens L., De Zutter D. Measurement of Low-Permittivity Materials Based on a Spectral-Domain Analysis for the Open-Ended Coaxial Probe. IEEE Trans. Instrum. Meas. 1993;42:879–886. doi: 10.1109/19.252521. DOI
Peyman A., Gabriel C., Grant E.H., Vermeeren G., Martens L. Variation of the Dielectric Properties of Tissues with Age: The Effect on the Values of SAR in Children When Exposed to Walkie-Talkie Devices. Phys. Med. Biol. 2009;54:227–241. doi: 10.1088/0031-9155/54/2/004. PubMed DOI
Salahuddin S., Porter E., Meaney P.M., O’Halloran M. Effect of Logarithmic and Linear Frequency Scales on Parametric Modelling of Tissue Dielectric Data. Biomed. Phys. Eng. Express. 2017;3:1–11. doi: 10.1088/2057-1976/aa59db. PubMed DOI PMC
Kraszewski A., Stuchly M.A., Stuchly S.S. ANA Calibration Method for Measurements of Dielectric Properties. IEEE Trans. Instrum. Meas. 1983;32:385–387. doi: 10.1109/TIM.1983.4315084. DOI
Buchner R., Hefter G.T., May M.P. Dielectric Relaxation of Aqueous NaCl Solutions. J. Phys. Chem. 1999;103:1–9. doi: 10.1021/jp982977k. DOI
Wei Y.Z., Sridhar S. Radiation-Corrected Open-Ended Coax Line Technique for Dielectric Measurements of Liquids up to 20 GHZ. IEEE Trans. Microw. Theory Tech. 1991;39:526–531. doi: 10.1109/22.75296. DOI
Gregory A.P., Clarke R.N. Tables of the Complex Permittivity of Dielectric Reference Liquids at Frequencies up to 5 GHz. National Physical Laboratory; Teddington, UK: 2012. NPL Report MAT 23.
Peyman A., Gabriel C., Grant E.H. Complex Permittivity of Sodium Chloride Solutions at Microwave Frequencies. Bioelectromagnetics. 2007;28:264–274. doi: 10.1002/bem.20271. PubMed DOI
Jordan B.P., Sheppard R.J., Szwarnowski S. The Dielectric Properties of Formamide, Ethanediol and Methanol. J. Phys. D Appl. Phys. 1978;11:695–701. doi: 10.1088/0022-3727/11/5/013. DOI
Barthel J., Buchner R. High Frequency Permittivity and Its Use in the Investigation of Solution Properties. Pure Appl. Chem. 1991;63:1473–1482. doi: 10.1351/pac199163101473. DOI
Stogryn A. Equations for Calculating the Dielectric Constant of Saline Water. IEEE Trans. Microw. Theory Tech. 1971;19:733–736. doi: 10.1109/TMTT.1971.1127617. DOI
Nortemann K., Hilland J., Kaatze U. Dielectric Properties of Aqueous NaCl Solutions at Microwave Frequencies. J. Phys. Chem. A. 1997;101:6864–6869. doi: 10.1021/jp971623a. DOI
Lamkaouchi K., Balana A., Delbos G., Ellison W.J. Permittivity Measurements of Lossy Liquids in the Range 26-110 GHz. Meas. Sci. Technol. 2003;14:444–450. doi: 10.1088/0957-0233/14/4/307. DOI
Kaatze U., Pottel R., Schaefer M. Dielectric Spectrum of Dimethyl Sulfoxide/Water Mixtures as a Function of Composition. J. Phys. Chem. 1989;93:5623–5627. doi: 10.1021/j100351a057. DOI
Vij J.K., Grochulski T., Kocot A., Hufnagel F. Complex Permittivity Measurements of Acetone in the Frequency Region 50–310 GHz. Mol. Phys. 1991;72:353–361. doi: 10.1080/00268979100100281. DOI
Gregory A.P., Clarke R.N. Dielectric Metrology with Coaxial Sensors. Meas. Sci. Technol. 2007;18:1372–1386. doi: 10.1088/0957-0233/18/5/026. DOI
Peyman A., Rezazadeh A., Gabriel C. Changes in the Dielectric Properties of Rat Tissue as a Function of Age at Microwave Frequencies. Phys. Med. Biol. 2001;46:1617–1629. doi: 10.1088/0031-9155/46/6/303. PubMed DOI
Chen G., Li K., Ji Z. Bilayered Dielectric Measurement With an Open-Ended Coaxial Probe. IEEE Trans. Microw. Theory Tech. 1994;42:966–971. doi: 10.1109/22.293564. DOI
Huclova S., Baumann D., Talary M., Fröhlich J. Sensitivity and Specificity Analysis of Fringing-Field Dielectric Spectroscopy Applied to a Multi-Layer System Modelling the Human Skin. Phys. Med. Biol. 2011;56:7777–7793. doi: 10.1088/0031-9155/56/24/007. PubMed DOI
Meaney P.M., Golnabi A., Fanning M.W., Geimer S.D., Paulsen K.D. Dielectric Volume Measurements for Biomedical Applications; Proceedings of the 13th International Symposium on Antenna Technology and Applied Electromagnetics and the Canadian Radio Sciences Meeting; Toronto, ON, Canada. 15–18 February 2009.
Johnson C.C., Guy A.W. Nonionizing Electromagnetic Wave Effects in Biological Materials and Systems. Proc. IEEE. 1972;60:692–718. doi: 10.1109/PROC.1972.8728. DOI
Shahzad A., Sonja K., Jones M., Dwyer R.M., O’Halloran M. Investigation of the Effect of Dehydration on Tissue Dielectric Properties in Ex Vivo Measurements. Biomed. Phys. Eng. Express. 2017;3:1–9. doi: 10.1088/2057-1976/aa74c4. DOI
Farrugia L., Wismayer P.S., Mangion L.Z., Sammut C.V. Accurate in Vivo Dielectric Properties of Liver from 500 MHz to 40 GHz and Their Correlation to Ex Vivo Measurements. Electromagn. Biol. Med. 2016;8378:1–9. doi: 10.3109/15368378.2015.1120221. PubMed DOI
Nopp P., Rapp E., Pfützner H., Nakesch H., Ruhsam C. Dielectric Properties of Lung Tissue as a Function of Air Content. Phys. Med. Biol. 1993;38:699–716. doi: 10.1088/0031-9155/38/6/005. PubMed DOI
Gabriel C., Peyman A., Grant E.H. Electrical Conductivity of Tissue at Frequencies below 1 MHz. Phys. Med. Biol. 2009;54:4863–4878. doi: 10.1088/0031-9155/54/16/002. PubMed DOI
Haemmerich D., Ozkan R., Tungjitkusolmun S., Tsai J.Z., Mahvi D., Staelin S.T., Webster J.G. Changes in Electrical Resistivity of Swine Liver after Occlusion and Postmortem. Med. Biol. Eng. Comput. 2002;40:29–33. doi: 10.1007/BF02347692. PubMed DOI
Ranck J.B., Bement S.L. The Specific Impedance of the Dorsal Columns of Cat: An Anisotropic Medium. Exp. Neurol. 1965;11:451–463. doi: 10.1016/0014-4886(65)90059-2. PubMed DOI
Hart F.X., Dunfee W.R. In Vivo Measurement of the Low-Frequency Dielectric Spectra of Frog Skeletal Muscle. Phys. Med. Biol. 1993;38:1099–1112. doi: 10.1088/0031-9155/38/8/008. PubMed DOI
Lopresto V., Pinto R., Farina L., Cavagnaro M. Treatment Planning in Microwave Thermal Ablation: Clinical Gaps and Recent Research Advances. Int. J. Hyperth. 2017;33:83–100. doi: 10.1080/02656736.2016.1214883. PubMed DOI
Young B., Woodford P., O’Dowd G. Wheater’s Functional Histology: A Text and Colour Atlas. 6th ed. Elsevier Health Sciences; London, UK: 2013.
Cross S.S. Grading and Scoring in Histopathology. Histopathology. 1998;33:99–106. doi: 10.1046/j.1365-2559.1998.00495.x. PubMed DOI
Veta M., Pluim J.P.W., Van Diest P.J., Viergever M.A. Breast Cancer Histopathology Image Analysis: A Review. IEEE Trans. Biomed. Eng. 2014;61:1400–1411. doi: 10.1109/TBME.2014.2303852. PubMed DOI
National Health Service (NHS) Pathology. National Health Service (NHS); London, UK: 2016.
Verkooijen H.M., Peterse J.L., Schipper M.E.I., Buskens E., Hendriks J.H.C.L., Pijnappel R.M., Peeters P.H.M., Borel Rinkes I.H.M., Mali W.P.T.M., Holland R. Interobserver Variability between General and Expert Pathologists during the Histopathological Assessment of Large-Core Needle and Open Biopsies of Non-Palpable Breast Lesions. Eur. J. Cancer. 2003;39:2187–2191. doi: 10.1016/S0959-8049(03)00540-9. PubMed DOI
Gomes D.S., Porto S.S., Balabram D., Gobbi H. Inter-Observer Variability between General Pathologists and a Specialist in Breast Pathology in the Diagnosis of Lobular Neoplasia, Columnar Cell Lesions, Atypical Ductal Hyperplasia and Ductal Carcinoma in Situ of the Breast. Diagn. Pathol. 2014;9:121. doi: 10.1186/1746-1596-9-121. PubMed DOI PMC
Gage J.C., Schiffman M., Hunt W.C., Joste N., Ghosh A., Wentzensen N., Wheeler C.M. Cervical Histopathology Variability among Laboratories: A Population-Based Statewide Investigation. Am. J. Clin. Pathol. 2013;139:330–335. doi: 10.1309/AJCPSD3ZXJXP7NNB. PubMed DOI PMC
Bruggeman D.A.G. Berechnung Verschiedener Physikalischer Konstanten von Heterogenen Substanzen. 1. Dielektizitatskonstanten Und Leitfahigkeiten Der Mischkorper Aus Isotropen Substanzen. Ann. Phys. 1935;24:636–679. doi: 10.1002/andp.19354160705. DOI
Machine Learning-Based Classification of Abnormal Liver Tissues Using Relative Permittivity