Ultra-Wideband Temperature Dependent Dielectric Spectroscopy of Porcine Tissue and Blood in the Microwave Frequency Range
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
HE 6015/2-1
Deutsche Forschungsgemeinschaft
17-20498J
Czech Science Foundation
PubMed
30974770
PubMed Central
PMC6479484
DOI
10.3390/s19071707
PII: s19071707
Knihovny.cz E-zdroje
- Klíčová slova
- M-sequence, dielectric spectroscopy, open-ended coaxial probe, temperature dependent dielectric properties of blood, fat, liver, muscle, ultra-wideband,
- MeSH
- algoritmy MeSH
- biologické modely MeSH
- elektrická impedance MeSH
- impedanční spektroskopie * MeSH
- játra fyziologie účinky záření MeSH
- krev účinky záření MeSH
- lidé MeSH
- mikrovlny * MeSH
- prasata MeSH
- svaly fyziologie účinky záření MeSH
- teplota * MeSH
- tuky účinky záření MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- tuky MeSH
The knowledge of frequency and temperature dependent dielectric properties of tissue is essential to develop ultra-wideband diagnostic technologies, such as a non-invasive temperature monitoring system during hyperthermia treatment. To this end, we characterized the dielectric properties of animal liver, muscle, fat and blood in the microwave frequency range from 0.5 GHz to 7 GHz and in the temperature range between 30 °C and 50 °C. The measured data were modeled to a two-pole Cole-Cole model and a second-order polynomial was introduced to fit the Cole-Cole parameters as a function of temperature. The parametric model provides access to the dielectric properties of tissue at any frequency and temperature in the specified range.
Zobrazit více v PubMed
Fear E.C., Bourqui J., Curtis C., Mew D., Docktor B., Romano C. Microwave breast imaging with a monostatic radar-based system: A study of application to patients. IEEE Trans. Microw. Theory Tech. 2013;61:2119–2128. doi: 10.1109/TMTT.2013.2255884. DOI
Scapaticci R., Bellizzi G., Catapano I., Crocco L., Bucci O.M. An effective procedure for MNP-enhanced breast cancer microwave imaging. IEEE Trans. Biomed. Eng. 2014;61:1071–1079. doi: 10.1109/TBME.2013.2293839. PubMed DOI
Preece A.W., Craddock I., Shere M., Jones L., Winton H.L. MARIA M4: Clinical evaluation of a prototype ultrawideband radar scanner for breast cancer detection. J. Med. Imaging. 2016;3:033502. doi: 10.1117/1.JMI.3.3.033502. PubMed DOI PMC
Wörtge D., Moll J., Krozer V., Bazrafshan B., Hübner F., Park C., Vogl T. Comparison of X-ray-Mammography and Planar UWB Microwave Imaging of the Breast: First Results from a Patient Study. Diagnostics. 2018;8:54. doi: 10.3390/diagnostics8030054. PubMed DOI PMC
O’Loughlin D., O’Halloran M., Moloney B.M., Glavin M., Jones E., Elahi M.A. Microwave breast imaging: Clinical advances and remaining challenges. IEEE Trans. Biomed. Eng. 2018;65:2580–2590. doi: 10.1109/TBME.2018.2809541. PubMed DOI
Helbig M., Dahlke K., Hilger I., Kmec M., Sachs J. Design and Test of an Imaging System for UWB Breast Cancer Detection. Frequenz. 2012;66:387–394. doi: 10.1515/freq-2012-0103. DOI
Scapaticci R., Bellizzi G.G., Cavagnaro M., Lopresto V., Crocco L. Exploiting Microwave Imaging Methods for Real-Time Monitoring of Thermal Ablation. Int. J. Antennas Propag. 2017;2017 doi: 10.1155/2017/5231065. DOI
Kidera S., Neira L.M., Van Veen B.D., Hagness S.C. TDOA-based microwave imaging algorithm for real-time microwave ablation monitoring. Int. J. Microw. Wirel. Technol. 2018;10:169–178. doi: 10.1017/S1759078717001258. DOI
Meaney P.M., Zhou T., Fanning M.W., Geimer S.D., Paulsen K.D. Microwave thermal imaging of scanned focused ultrasound heating: Phantom results. Int. J. Hyperth. 2008;24:523–536. doi: 10.1080/02656730801944922. PubMed DOI PMC
Haynes M., Stang J., Moghaddam M. Real-time microwave imaging of differential temperature for thermal therapy monitoring. IEEE Trans. Biomed. Eng. 2014;61:1787–1797. doi: 10.1109/TBME.2014.2307072. PubMed DOI PMC
Fiser O., Helbig M., Sachs J., Ley S., Merunka I., Vrba J. Microwave Non-invasive Temperature Monitoring Using UWB Radar for Cancer Treatment by Hyperthermia. Prog. Electromagn. Res. 2018;162:1–14. doi: 10.2528/PIER17111609. DOI
Schena E., Tosi D., Saccomandi P., Lewis E., Kim T. Fiber optic sensors for temperature monitoring during thermal treatments: An overview. Sensors. 2016;16:1144. doi: 10.3390/s16071144. PubMed DOI PMC
Ley S., Fiser O., Merunka I., Vrba J., Sachs J., Helbig M. Preliminary Investigations for Non-invasive Temperature Change Detection in Thermotherapy by Means of UWB Microwave Radar; Proceedings of the 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC); Honolulu, HI, USA. 17–21 July 2018; pp. 5386–5389. PubMed DOI
Gabriel S., Lau R.W., Gabriel C. The dielectric properties of biological tissues: II. Measurements in the frequency range 10 Hz to 20 GHz. Phys. Med. Biol. Phys. Med. Biol. 1996;41:2251–2269. doi: 10.1088/0031-9155/41/11/002. PubMed DOI
Lazebnik M., Popovic D., McCartney L., Watkins C.B., Lindstrom M.J., Harter J., Sewall S., Ogilvie T., Magliocco A., Breslin T.M., et al. A large-scale study of the ultrawideband microwave dielectric properties of normal, benign and malignant breast tissues obtained from cancer surgeries. Phys. Med. Biol. 2007;52:6093. doi: 10.1088/0031-9155/52/20/002. PubMed DOI
Fornes-Leal A., Garcia-Pardo C., Frasson M., Pons Beltrán V., Cardona N. Dielectric characterization of healthy and malignant colon tissues in the 0.5-18 GHz frequency band. Phys. Med. Biol. 2016;61:7334–7346. doi: 10.1088/0031-9155/61/20/7334. PubMed DOI
Farrugia L., Wismayer P.S., Mangion L.Z., Sammut C.V. Accurate in vivo dielectric properties of liver from 500 MHz to 40 GHz and their correlation to ex vivo measurements. Electromagn. Biol. Med. 2016;35:365–373. doi: 10.3109/15368378.2015.1120221. PubMed DOI
Porter E., Salahuddin S., La Gioia A., Elahi M.A., Shahzad A., Kumar A., Kilroy D., O’Halloran M. Characterization of the Dielectric Properties of the Bladder Over the Microw. Range. IEEE J. Electromagn. RF Microw. Med. Biol. 2018;2:208–215. doi: 10.1109/JERM.2018.2859584. DOI
Lazebnik M., Converse M.C., Booske J.H., Hagness S.C. Ultrawideband temperature-dependent dielectric properties of animal liver tissue in the microwave frequency range. Phys. Med. Biol. 2006;51:1941–1955. doi: 10.1088/0031-9155/51/7/022. PubMed DOI
Jaspard F., Nadi M. Dielectric properties of blood: An investigation of temperature dependence. Physiol. Meas. 2002;23:547–554. doi: 10.1088/0967-3334/23/3/306. PubMed DOI
Wolf M., Gulich R., Lunkenheimer P., Loidl A. Broadband dielectric spectroscopy on human blood. Biochim. Biophys. Acta Gen. Subj. 2011;1810:727–740. doi: 10.1016/j.bbagen.2011.05.012. PubMed DOI
Salahuddin S., O’Halloran M., Porter E., Farrugia L., Bonello J., Sammut C.V., Wismayer P.S. Effects of standard coagulant agents on the dielectric properties of fresh human blood. IEEE Trans. Dielectr. Electr. Insul. 2017;24:3283–3289. doi: 10.1109/TDEI.2017.006582. DOI
Rossmann C., Haemmerich D. Review of Temperature Dependence of Thermal Properties, Dielectric Properties, and Perfusion of Biological Tissues at Hyperthermic and Ablation Temperatures. Crit. Rev. Biomed. Eng. 2014;42:467–492. doi: 10.1615/CritRevBiomedEng.2015012486. PubMed DOI PMC
La Gioia A., Porter E., Merunka I., Shahzad A., Salahuddin S., Jones M., O’Halloran M. Open-Ended Coaxial Probe Technique for Dielectric Measurement of Biological Tissues: Challenges and Common Practices. Diagnostics. 2018;8:40. doi: 10.3390/diagnostics8020040. PubMed DOI PMC
Hilger I., Dahlke K., Rimkus G., Geyer C., Seifert F., Kosch O., Thiel F., Hein M., Scotto F., Schwarz U., et al. Ultra-Wideband Radio Technologies for Communications, Localization and Sensor Applications. IntechOpen; Rijeka, Croatia: 2013. ultraMEDIS—Ultra-Wideband Sensing in Medicine; pp. 257–322.
Sachs J. Handbook of Ultra-Wideband Short-Range Sensing. Wiley-VCH Verlag GmbH & Co. KGaA; Weinheim, Germany: 2012.
Ley S., Fiser O., Merunka I., Vrba J., Sachs J., Helbig M. Preliminary Investigations for Reliable Temperature Dependent UWB Dielectric Spectroscopy of Tissues and Tissue Mimicking Phantom Materials; Proceedings of the 12th European Conference on Antennas and Propagation (EuCAP 2018); London, UK. 9–13 April 2018; pp. 1–5.
Hagl D.M., Popovic D., Hagness S.C., Booske J.H., Okoniewski M. Sensing volume of open-ended coaxial probes for dielectric characterization of breast tissue at microwave frequencies. IEEE Trans. Microw. Theory Tech. 2003;51:1194–1206. doi: 10.1109/TMTT.2003.809626. DOI
Meaney P.M., Gregory A.P., Seppala J., Lahtinen T. Open-Ended Coaxial Dielectric Probe Effective Penetration Depth Determination. IEEE Trans. Microw. Theory Tech. 2016;64:915–923. doi: 10.1109/TMTT.2016.2519027. PubMed DOI PMC
Gabriel C., Gabriel S., Corthout E. The dielectric properties of biological tissues: I. Literature survey. Phys. Med. Biol. 1996;41:2231–2249. doi: 10.1088/0031-9155/41/11/001. PubMed DOI
Gabriel S., Lau R.W., Gabriel C. Physics in Medicine & Biology. The dielectric properties of biological tissues: III. Parametric models for the dielectric spectrum of tissues. Phys. Med. Biol. Phys. Med. Biol. 1996;41:2251–2269. PubMed
Foster K.R., Schwan P.S. Handbook of Biological Effects of Electromagnetic Fields. CRC Press; Boca Raton, FL, USA: 1996. Dielectric Properties of Tissues; pp. 27–102.
Peyman A., Holden S., Gabriel C. Mobile Telecommunications and Health Research Programme Final Report. Chilton; Didcot, UK: 2005. Dielectric Properties of Tissues at Microwave Frequencies.
Kaatze U. Complex permittivity of water as a function of frequency and temperature. J. Chem. Eng. Data. 1989;34:371–374. doi: 10.1021/je00058a001. DOI
Ellison W.J. Permittivity of pure water, at standard atmospheric pressure, over the frequency range 0–25 THz and the temperature range 0–100 °C. J. Phys. Chem. Ref. Data. 2007;36:1–18. doi: 10.1063/1.2360986. DOI
Pethig R., Kell D.B. The passive electrical properties of biological systems: Their significance in physiology. Phys. Med. Biol. 1987;32:933–970. doi: 10.1088/0031-9155/32/8/001. PubMed DOI
Sachs J., Ley S., Just T., Chamaani S., Helbig M. Differential ultra-wideband microwave imaging: Principle application challenges. Sensors. 2018;18:2136. doi: 10.3390/s18072136. PubMed DOI PMC