On-Surface Bottom-Up Synthesis of Azine Derivatives Displaying Strong Acceptor Behavior
Status PubMed-not-MEDLINE Jazyk angličtina Země Německo Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
Grantová podpora
610256
European Research Council - International
F05 AT002014
NCCIH NIH HHS - United States
PubMed
29931817
PubMed Central
PMC6055674
DOI
10.1002/anie.201804110
Knihovny.cz E-zdroje
- Klíčová slova
- ab initio calculations, charge transfer, photoelectron spectroscopy, scanning probe microscopy, surface chemistry,
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
On-surface synthesis is an emerging approach to obtain, in a single step, precisely defined chemical species that cannot be obtained by other synthetic routes. The control of the electronic structure of organic/metal interfaces is crucial for defining the performance of many optoelectronic devices. A facile on-surface chemistry route has now been used to synthesize the strong electron-acceptor organic molecule quinoneazine directly on a Cu(110) surface, via thermally activated covalent coupling of para-aminophenol precursors. The mechanism is described using a combination of in situ surface characterization techniques and theoretical methods. Owing to a strong surface-molecule interaction, the quinoneazine molecule accommodates 1.2 electrons at its carbonyl ends, inducing an intramolecular charge redistribution and leading to partial conjugation of the rings, conferring azo-character at the nitrogen sites.
Centre for Mechanical Technology and Automation University of Aveiro 3810 193 Aveiro Portugal
Laboratorio TASC CNR IOM Basovizza SS 14 Km 163 5 34149 Trieste Italy
Zobrazit více v PubMed
Otero R., Vázquez de Parga A. L., Gallego J. M., Surf. Sci. Rep. 2017, 72, 105–145.
Meier T., Pawlak R., Kawai S., Geng Y., Liu X., Decurtins S., Hapala P., Baratoff A., Liu S. X., Jelínek P., et al., ACS Nano 2017, 11, 8413–8420. PubMed
Tseng T. C., Urban C., Wang Y., Otero R., Tait S. L., Alcamí M., Écija D., Trelka M., Gallego J. M., Lin N., et al., Nat. Chem. 2010, 2, 374–379. PubMed
Zamborlini G., Lüftner D., Feng Z., Kollmann B., Puschnig P., Dri C., Panighel M., Di Santo G., Goldoni A., Comelli G., et al., Nat. Commun. 2017, 8, 1–7. PubMed PMC
Hollerer M., Lüftner D., Hurdax P., Ules T., Soubatch S., Tautz F. S., Koller G., Puschnig P., Sterrer M., Ramsey M. G., ACS Nano 2017, 11, 6252–6260. PubMed PMC
Goiri E., Borghetti P., El-Sayed A., Ortega J. E., De Oteyza D. G., Adv. Mater. 2016, 28, 1340–1368. PubMed
Méndez J., López M. F., Martín-Gago J. A., Chem. Soc. Rev. 2011, 40, 4578. PubMed
Lindner R., Kühnle A., ChemPhysChem 2015, 16, 1582–1592. PubMed
Otero G., Biddau G., Sánchez-Sánchez C., Caillard R., López M. F., Rogero C., Palomares F. J., Cabello N., Basanta M. A., Ortega J., et al., Nature 2008, 454, 865–868. PubMed
Sanchez-Valencia J. R., Dienel T., Gröning O., Shorubalko I., Mueller A., Jansen M., Amsharov K., Ruffieux P., Fasel R., Nature 2014, 512, 61–64. PubMed
Stetsovych O., Švec M., Vacek J., Chocholoušová J. V., Jančařík A., Rybáček J., Kosmider K., Stará I. G., Jelínek P., Starý I., Nat. Chem. 2017, 9, 213–218. PubMed
Toffoli D., Stredansky M., Feng Z., Balducci G., Furlan S., Stener M., Ustunel H., Cvetko D., Kladnik G., Morgante A., et al., Chem. Sci. 2017, 8, 3789–3798. PubMed PMC
Safari J., Gandomi-Ravandi S., RSC Adv. 2014, 4, 46224–46249.
Tomerini D., Gatti C., Frayret C., Phys. Chem. Chem. Phys. 2015, 17, 8604–8608. PubMed
Willstätter R., Benz M., Ber. Dtsch. Chem. Ges. 1907, 40, 1578–1584.
Otero-Irurueta G., Martínez J. I., Bueno R. A., Palomares F. J., Salavagione H. J., Singh M. K., Méndez J., Ellis G. J., López M. F., Martín-Gago J. A., Surf. Sci. 2016, 646, 5–12. PubMed PMC
Olivieri G., Cossaro A., Capria E., Benevoli L., Coreno M., De Simone M., Prince K. C., Kladnik G., Cvetko D., Fraboni B., et al., J. Phys. Chem. C 2015, 119, 121–129.
Richardson N. V., Hofmann P., Vacuum 1983, 33, 793–796.
Plank R. V., DiNardo N. J., Vohs J. M., Surf. Sci. 1995, 340, L971–L977.
Piantek M., Miguel J., Krüger A., Navío C., Bernien M., Ball D. K., Hermann K., Kuch W., J. Phys. Chem. C 2009, 113, 20307–20315.
Diller K., Klappenberger F., Marschall M., Hermann K., Nefedov A., Wöll C., Barth J. V., J. Chem. Phys. 2012, 136, 014705. PubMed
Bebensee F., Svane K., Bombis C., Masini F., Klyatskaya S., Besenbacher F., Ruben M., Hammer B., Linderoth T., Chem. Commun. 2013, 49, 9308. PubMed
Stöhr J., Outka D. A., Phys. Rev. B 1987, 36, 7891–7905. PubMed
Hapala P., Kichin G., Wagner C., Tautz F. S., Temirov R., Jelínek P., Phys. Rev. B 2014, 90, 1–9. PubMed
Crecca C. R., Roitberg A. E., J. Phys. Chem. A 2006, 110, 8188–8203. PubMed
Henningsen N., Rurali R., Franke K. J., Fernández-Torrente I., Pascual J. I., Appl. Phys. A 2008, 93, 241–246.
Gross L., Mohn F., Moll N., Schuler B., Criado A., Guitian E., Pena D., Gourdon A., Meyer G., Science 2012, 337, 1326–1329. PubMed