On-Surface Bottom-Up Synthesis of Azine Derivatives Displaying Strong Acceptor Behavior

. 2018 Jul 09 ; 57 (28) : 8582-8586. [epub] 20180621

Status PubMed-not-MEDLINE Jazyk angličtina Země Německo Médium print-electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid29931817

Grantová podpora
610256 European Research Council - International
F05 AT002014 NCCIH NIH HHS - United States

On-surface synthesis is an emerging approach to obtain, in a single step, precisely defined chemical species that cannot be obtained by other synthetic routes. The control of the electronic structure of organic/metal interfaces is crucial for defining the performance of many optoelectronic devices. A facile on-surface chemistry route has now been used to synthesize the strong electron-acceptor organic molecule quinoneazine directly on a Cu(110) surface, via thermally activated covalent coupling of para-aminophenol precursors. The mechanism is described using a combination of in situ surface characterization techniques and theoretical methods. Owing to a strong surface-molecule interaction, the quinoneazine molecule accommodates 1.2 electrons at its carbonyl ends, inducing an intramolecular charge redistribution and leading to partial conjugation of the rings, conferring azo-character at the nitrogen sites.

Zobrazit více v PubMed

Otero R., Vázquez de Parga A. L., Gallego J. M., Surf. Sci. Rep. 2017, 72, 105–145.

Meier T., Pawlak R., Kawai S., Geng Y., Liu X., Decurtins S., Hapala P., Baratoff A., Liu S. X., Jelínek P., et al., ACS Nano 2017, 11, 8413–8420. PubMed

Tseng T. C., Urban C., Wang Y., Otero R., Tait S. L., Alcamí M., Écija D., Trelka M., Gallego J. M., Lin N., et al., Nat. Chem. 2010, 2, 374–379. PubMed

Zamborlini G., Lüftner D., Feng Z., Kollmann B., Puschnig P., Dri C., Panighel M., Di Santo G., Goldoni A., Comelli G., et al., Nat. Commun. 2017, 8, 1–7. PubMed PMC

Hollerer M., Lüftner D., Hurdax P., Ules T., Soubatch S., Tautz F. S., Koller G., Puschnig P., Sterrer M., Ramsey M. G., ACS Nano 2017, 11, 6252–6260. PubMed PMC

Goiri E., Borghetti P., El-Sayed A., Ortega J. E., De Oteyza D. G., Adv. Mater. 2016, 28, 1340–1368. PubMed

Méndez J., López M. F., Martín-Gago J. A., Chem. Soc. Rev. 2011, 40, 4578. PubMed

Lindner R., Kühnle A., ChemPhysChem 2015, 16, 1582–1592. PubMed

Otero G., Biddau G., Sánchez-Sánchez C., Caillard R., López M. F., Rogero C., Palomares F. J., Cabello N., Basanta M. A., Ortega J., et al., Nature 2008, 454, 865–868. PubMed

Sanchez-Valencia J. R., Dienel T., Gröning O., Shorubalko I., Mueller A., Jansen M., Amsharov K., Ruffieux P., Fasel R., Nature 2014, 512, 61–64. PubMed

Stetsovych O., Švec M., Vacek J., Chocholoušová J. V., Jančařík A., Rybáček J., Kosmider K., Stará I. G., Jelínek P., Starý I., Nat. Chem. 2017, 9, 213–218. PubMed

Toffoli D., Stredansky M., Feng Z., Balducci G., Furlan S., Stener M., Ustunel H., Cvetko D., Kladnik G., Morgante A., et al., Chem. Sci. 2017, 8, 3789–3798. PubMed PMC

Safari J., Gandomi-Ravandi S., RSC Adv. 2014, 4, 46224–46249.

Tomerini D., Gatti C., Frayret C., Phys. Chem. Chem. Phys. 2015, 17, 8604–8608. PubMed

Willstätter R., Benz M., Ber. Dtsch. Chem. Ges. 1907, 40, 1578–1584.

Otero-Irurueta G., Martínez J. I., Bueno R. A., Palomares F. J., Salavagione H. J., Singh M. K., Méndez J., Ellis G. J., López M. F., Martín-Gago J. A., Surf. Sci. 2016, 646, 5–12. PubMed PMC

Olivieri G., Cossaro A., Capria E., Benevoli L., Coreno M., De Simone M., Prince K. C., Kladnik G., Cvetko D., Fraboni B., et al., J. Phys. Chem. C 2015, 119, 121–129.

Richardson N. V., Hofmann P., Vacuum 1983, 33, 793–796.

Plank R. V., DiNardo N. J., Vohs J. M., Surf. Sci. 1995, 340, L971–L977.

Piantek M., Miguel J., Krüger A., Navío C., Bernien M., Ball D. K., Hermann K., Kuch W., J. Phys. Chem. C 2009, 113, 20307–20315.

Diller K., Klappenberger F., Marschall M., Hermann K., Nefedov A., Wöll C., Barth J. V., J. Chem. Phys. 2012, 136, 014705. PubMed

Bebensee F., Svane K., Bombis C., Masini F., Klyatskaya S., Besenbacher F., Ruben M., Hammer B., Linderoth T., Chem. Commun. 2013, 49, 9308. PubMed

Stöhr J., Outka D. A., Phys. Rev. B 1987, 36, 7891–7905. PubMed

Hapala P., Kichin G., Wagner C., Tautz F. S., Temirov R., Jelínek P., Phys. Rev. B 2014, 90, 1–9. PubMed

Crecca C. R., Roitberg A. E., J. Phys. Chem. A 2006, 110, 8188–8203. PubMed

Henningsen N., Rurali R., Franke K. J., Fernández-Torrente I., Pascual J. I., Appl. Phys. A 2008, 93, 241–246.

Gross L., Mohn F., Moll N., Schuler B., Criado A., Guitian E., Pena D., Gourdon A., Meyer G., Science 2012, 337, 1326–1329. PubMed

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Copper-assisted oxidation of catechols into quinone derivatives

. 2020 Dec 21 ; 12 (6) : 2257-2267. [epub] 20201221

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...