• This record comes from PubMed

Copper-assisted oxidation of catechols into quinone derivatives

. 2020 Dec 21 ; 12 (6) : 2257-2267. [epub] 20201221

Status PubMed-not-MEDLINE Language English Country Great Britain, England Media electronic

Document type Journal Article

Catechols are ubiquitous substances often acting as antioxidants, thus of importance in a variety of biological processes. The Fenton and Haber-Weiss processes are thought to transform these molecules into aggressive reactive oxygen species (ROS), a source of oxidative stress and possibly inducing degenerative diseases. Here, using model conditions (ultrahigh vacuum and single crystals), we unveil another process capable of converting catechols into ROSs, namely an intramolecular redox reaction catalysed by a Cu surface. We focus on a tri-catechol, the hexahydroxytriphenylene molecule, and show that this antioxidant is thereby transformed into a semiquinone, as an intermediate product, and then into an even stronger oxidant, a quinone, as final product. We argue that the transformations occur via two intramolecular redox reactions: since the Cu surface cannot oxidise the molecules, the starting catechol and the semiquinone forms each are, at the same time, self-oxidised and self-reduced. Thanks to these reactions, the quinone and semiquinone are able to interact with the substrate by readily accepting electrons donated by the substrate. Our combined experimental surface science and ab initio analysis highlights the key role played by metal nanoparticles in the development of degenerative diseases.

See more in PubMed

Barclay L. R. C. Edwards C. E. Vinqvist M. R. Media effects on antioxidant activities of phenols and catechols. J. Am. Chem. Soc. 1999;122:6226–6231. doi: 10.1021/ja990878u. DOI

Ruiz-Larrera M. B. Martín C. Navarro R. Lacort M. Miller N. J. Antioxidant activities of estrogens against aqueous and lipophilic radicals; differences between phenol and catechol estrogens. Chem. Phys. Lipids. 2000;105:179–188. doi: 10.1016/S0009-3084(00)00120-1. PubMed DOI

Pierpont C. C. Buchanan R. M. Studies on charge distribution and valence tautomerism in transition metal complexes of catecholate and semiquinonate ligands. Coord. Chem. Rev. 2001;216–217:99–125. doi: 10.1016/S0010-8545(01)00309-5. DOI

Cavalieri E. L. Stack D. E. Devanesan P. D. Todorovic R. Dwivedy I. Higginbotham S. Johansson S. L. Patil K. D. Gross M. L. Gooden J. K. Ramanathan R. Cerny R. L. Rogan E. G. Molecular origin of cancer: Catechol estrogen-3,4-quinones as endogenous tumor  initiators. Proc. Natl. Acad. Sci. U. S. A. 1997;94:10937–10942. doi: 10.1073/pnas.94.20.10937. PubMed DOI PMC

Oikawa S. Hirosawa I. Hirakawa K. Kawanishi S. Site specificity and mechanism of oxidative DNA damage induced by carcinogenic catechol. Carcinogenesis. 2001;22:1239–1245. doi: 10.1093/carcin/22.8.1239. PubMed DOI

Hirakawa K. Oikawa S. Hiraku Y. Hirosawa I. Kawanishi S. Catechol and hydroquinone have different redox properties responsible for their differential DNA-damaging ability. Chem. Res. Toxicol. 2002;15:76–82. PubMed

Cavalieri E. L. Li K.-M. Balu N. Saeed M. Devanesan P. Higginbotham S. Zhao J. Gross M. L. Rogan E. G. Catechol ortho-quinones: the electrophilic compounds that form depurinating DNA adducts and could initiate cancer and other diseases. Carcinogenesis. 2002;23:1071–1077. doi: 10.1093/carcin/23.6.1071. PubMed DOI

Cavalieri E. Chakravarti D. Guttenplan J. Hart E. Ingle J. Jankowiak R. Muti P. Rogan E. Russo J. Santen R. Sutter T. Catechol estrogen quinones as initiators of breast and other human cancers: Implications for biomarkers of susceptibility and cancer prevention. Biochim. Biophys. Acta, Rev. Cancer. 2006;1766:63–78. doi: 10.1016/j.bbcan.2006.03.001. PubMed DOI

Zhahid M. Saeed M. Morgan E. G. Cavalieri E. L. Benzene and dopamine catechol quinones could initiate cancer or neurogenic disease. Free Radicals Biol. Med. 2010;48:318–324. doi: 10.1016/j.freeradbiomed.2009.11.002. PubMed DOI PMC

Cavalieri E. L. Rogan E. G. Depurinating estrogen-DNA adducts, generators of cancer initiation: their minimization leads to cancer prevention. Clin. Transl. Med. 2016;5:12. PubMed PMC

Koppenol W. H. The centennial of the Fenton reaction. Free Radicals Biol. Med. 1993;15:645–651. doi: 10.1016/0891-5849(93)90168-T. PubMed DOI

Koppenol W. H. The Haber–Weiss cycle—70 years later. Redox Rep. 2001;6:229–234. doi: 10.1179/135100001101536373. PubMed DOI

Valko M. Rhodes C. J. Moncol J. Izakovic M. Mazur M. Free radicals, metals and antioxidants in oxidative stress-induced cancer. Chem.-Biol. Interact. 2006;160:1–40. doi: 10.1016/j.cbi.2005.12.009. PubMed DOI

Aust S. Chignell C. Bray T. Kalyanaraman B. Mason R. Free radicals in toxicology. Toxicol. Appl. Pharmacol. 1993;120:168–178. doi: 10.1006/taap.1993.1100. PubMed DOI

Abdal Dayem A. Hossain M. K. Lee S. B. Kim K. Saha S. K. Yang G.-M. Choi H. Y. Cho S.-G. The role of reactive oxygen species (ROS) in the biological activities of metallic nanoparticles. Int. J. Mol. Sci. 2017;18:120. doi: 10.3390/ijms18010120. PubMed DOI PMC

Fu P. P. Xia Q. Hwang H.-M. Ray P. C. Yu H. J. Mechanisms of nanotoxicity: generation of reactive oxygen species. J. Food Drug Anal. 2014;22:54–75. PubMed PMC

Shaligram S. Campbell A. Toxicity of copper salts is dependent on solubility profile and cell type tested. Toxicol. In Vitro. 2013;27:844–851. doi: 10.1016/j.tiv.2012.12.026. PubMed DOI

Shi M. de Mesy Bentley K. L. Palui G. Mattoussi H. Elder A. Yang H. The roles of surface chemistry, dissolution rate, and delivered dose in the cytotoxicity of copper nanoparticles. Nanoscale. 2017;9:4739–4750. doi: 10.1039/C6NR09102D. PubMed DOI PMC

Šulce A. Bulke F. Schowalter M. Rosenauer A. Dringen R. Kunz S. Reactive oxygen species (ROS) formation ability and stability of small copper (Cu) nanoparticles (NPs) RSC Adv. 2016;6:76980–76988. doi: 10.1039/C6RA16599K. DOI

Shi M. Kwon H. S. Peng Z. Elder A. Yang H. Effects of surface chemistry on the generation of reactive oxygen species by copper nanoparticles. ACS Nano. 2012;6:2157–2164. doi: 10.1021/nn300445d. PubMed DOI PMC

Rodhe Y. Skoglung S. Wallinder I. O. Potácová Z. Möller R. Copper-based nanoparticles induce high toxicity in leukemic HL60 cells. Toxicol. In Vitro. 2015;29:1711–1719. doi: 10.1016/j.tiv.2015.05.020. PubMed DOI

Treier M. Pignedoli C. A. Laino T. Rieger R. Müllen K. Passerone D. Fasel R. Surface-assisted cyclodehydrogenation provides a synthetic route towards easily processable and chemically tailored nanographenes. Nat. Chem. 2010;3:61–67. doi: 10.1038/nchem.891. PubMed DOI

Di Giovannantonio M. Urgel J. I. Beser U. Yakutovich A. V. Wilhelm J. Pignedoli C. A. Ruffieux P. Narita A. Müllen K. Fasel R. On-surface synthesis of indenofluorene polymers by oxidative five-membered ring formation. J. Am. Chem. Soc. 2018;140:3532–3536. doi: 10.1021/jacs.8b00587. PubMed DOI

Di Santo G. Blankenburg S. Castellarin-Cudia C. Fanetti M. Borghetti P. Sangaletti L. Floreano L. Verdini A. Magnano E. Bondino F. Pignedoli C. A. Nguyen M.-T. Gaspari R. Passerone D. Goldoni A. Supramolecular engineering through temperature-induced chemical modification of 2H-tetraphenylporphyrin on Ag(111): flat phenyl conformation and possible dehydrogenation reactions. Chem.–Eur. J. 2011;17:14354–14359. doi: 10.1002/chem.201102268. PubMed DOI

Coratger R. Calmettes B. Abel M. Porte L. TM observations of the first polymerization steps between hexahydroxy-tri-phenylene and benzene-di-boronic acid molecules. Surf. Sci. 2011;605:831–837. doi: 10.1016/j.susc.2011.01.028. DOI

Marele A. C. Corral I. Sanz P. Mas-Ballesté R. Zamora F. Yáñez M. Gómez-Rodríguez J. M. Some pictures of alcoholic dancing: from simple to complex hydrogen-bonded networks based on polyalcohols. J. Phys. Chem. C. 2013;117:4680–4690. doi: 10.1021/jp312424q. DOI

Tseng T.-C. Urban C. Wang Y. Otero R. Tait S. L. Alcamí M. Écija D. Trelka M. Gallego J. M. Lin N. Charge-transfer-induced structural rearrangements at both sides of organic/metal interfaces. Nat. Chem. 2010;2:374–379. doi: 10.1038/nchem.591. PubMed DOI

Pawlak R. Clair S. Oison V. Abel M. Ourdjini O. Zwaneveld N. A. A. Gigmes D. Bertin D. Nony L. Porte L. Robust supramolecular network on Ag(111): hydrogen-bond enhancement through partial alcohol dehydrogenation. ChemPhysChem. 2009;10:1032–1035. doi: 10.1002/cphc.200900055. PubMed DOI

Fischer S. Papageorgiou A. C. Lloyd J. A. Oh S. C. Diller K. Allegretti F. Klappenberger F. Seitsonen A. P. Reichert J. Barth J. V. Self-assembly and chemical modifications of bisphenol A on Cu(111): interplay between ordering and thermally activated stepwise deprotonation. ACS Nano. 2014;8:207–215. doi: 10.1021/nn4030493. PubMed DOI

Bebensee F. Svane K. Bombis C. Masini F. Klyatskaya S. Besenbacher F. Ruben M. Hammera B. Linderoth T. Adsorption and dehydrogenation of tetrahydroxybenzene on Cu(111) Chem. Commun. 2013;49:9308–9310. doi: 10.1039/C3CC45052J. PubMed DOI

De Marchi F. Galeotti G. Simenas M. Tornau E. E. Pezzella A. MacLeod J. Ebrahimi M. Rosei F. Room-temperature surface-assisted reactivity of a melanin precursor: silver metal-organic coordination versus covalent dimerization on gold. Nanoscale. 2018;10:16721–16729. doi: 10.1039/C8NR04002H. PubMed DOI

Lo Cicero M. Della Pia A. Riello M. Colazzo L. Sedona F. Betti M. G. Sambi M. De Vita A. Mariani C. A long-range ordered array of copper tetrameric units embedded in an on-surface metal organic framework. J. Chem. Phys. 2017;147:214706. doi: 10.1063/1.5004082. PubMed DOI

Giovanelli L. Ourdjini O. Abel M. Pawlak R. Fujii J. Porte L. Themlin J.-M. Clair S. Combined photoemission spectroscopy and scanning tunneling microscopy study of the sequential dehydrogenation of hexahydroxytriphenylene on Ag(111) J. Phys. Chem. C. 2014;118:14899–14904. doi: 10.1021/jp501849h. DOI

Aplincourt P. Bureau C. Anthoine J.-L. Chong D. P. Accurate density functional calculations of core electron binding energies on hydrogen-bonded systems. J. Phys. Chem. A. 2001;105:7364–7370. doi: 10.1021/jp0100194. DOI

Lesiak B. Köver L. Tóth J. Zemek J. Jiricek P. Kromka A. Rangam N. C sp2/sp3 hybridisations in carbon nanomateriale—XPS and (X)AES study. Appl. Surf. Sci. 2018;452:223–231. doi: 10.1016/j.apsusc.2018.04.269. DOI

Bowker M. Madix R. J. XPS, UPS and thermal desorption studies of alcohol adsorption on Cu(110): I. Methanol. Surf. Sci. 1980;95:190–206. doi: 10.1016/0039-6028(80)90135-1. DOI

Bowker M. Madix R. J. XPS, UPS and thermal desorption studies of alcohol adsorption on Cu(110): II. Higher alcohols. Surf. Sci. 1982;116:549–572. doi: 10.1016/0039-6028(82)90364-8. DOI

Zhang R. Liu J. Gao Y. Hua M. Xia B. Knecht P. Papageorgiou A. C. Reichert J. Barth J. V. Xu H. On-surface synthesis of semi-conducting 2D metal-organic framework Cu3(C6O6) exhibiting dispersive electronic bands. Angew. Chem., Int. Ed. 2020;59:2669–2673. doi: 10.1002/anie.201913698. PubMed DOI

Heimel G. Duhm S. Salzmann I. Gerlach A. Strozecka A. Niederhausen J. Bürker C. Hosokai T. Fernandez-Torrente I. Schulze G. Charged and metallic molecular monolayers through surface-induced aromatic stabilization. Nat. Chem. 2013;5:187–194. doi: 10.1038/nchem.1572. PubMed DOI

Francis J. Hitchcock A. Inner-shell spectroscopy of p-benzoquinone, hydroquinone, and phenol: distinguishing quinoid and benzenoid structures. J. Phys. Chem. 1992;96:6598–6610. doi: 10.1021/j100195a018. DOI

Ammond Ch. Bayer A. Held G. Richter B. Schmidt Th. Steinrück H.-P. Dissociation and oxidation of methanol on Cu(110) Surf. Sci. 2002;507–510:845–850. doi: 10.1016/S0039-6028(02)01361-4. DOI

Diller K. Klappenberger F. Marschall M. Hermann K. Nefedov A. Wöll Ch. Barth J. V. Self-metalation of 2H-tetraphenylporphyrin on Cu(111): An x-ray spectroscopy study. J. Chem. Phys. 2012;136:014705. doi: 10.1063/1.3674165. PubMed DOI

Wheeler D. E. Rodriguez J. H. McCusker J. K. Density functional theory analysis of electronic structure variations across the orthoquinone/semiquinone/catechol redox series. J. Phys. Chem. A. 1999;103:4101–4112. doi: 10.1021/jp990166q. DOI

Correa A. Arantes Dantas J. Menezes Correia J. T. Weber Paixão M. Photochemistry of carbonyl groups: application on metal-free reactions. ChemPhotoChem. 2019;3:506–520. doi: 10.1002/cptc.201900044. DOI

Ruiz del Árbol N. Palacio I. Otero-Irurueta G. Martínez J. I. de Andrés P. L. Stetsovych O. Moro-Lagares M. Mutombo P. Svec M. Jelínek P. Cossaro A. Floreano L. Ellis G. J. López M. F. Martín-Gago J. A. On-surface bottom-up synthesis of azine derivatives displaying strong acceptor behavior. Angew. Chem., Int. Ed. 2018;130:8718–8722. doi: 10.1002/ange.201804110. PubMed DOI PMC

Yang L. He X. Dincă M. Triphenylene-bridged trinuclear complexes of Cu: models for spin interactions in two-dimensional electrically conductive metal-organic frameworks. J. Am. Chem. Soc. 2019;141:10475–10480. doi: 10.1021/jacs.9b04822. PubMed DOI

Sheberla D. Sun L. Blood-Forsythe M. A. Er S. Wade C. R. Brozek C. K. Aspuru-Guzik A. Dincă M. High electrical conductivity in Ni3(2,3,6,7,10,11-hexaiminotriphenylene)2, a semiconducting metal-organic graphene analogue. J. Am. Chem. Soc. 2014;136:8859–8862. doi: 10.1021/ja502765n. PubMed DOI

Campbell M. G. Sheberla D. Liu S. F. Swager T. M. Dincă M. Cu3(hexaiminotriphenylene)2: an electrically conductive 2D metal-organic framework for chemiresistive sensing. Angew. Chem., Int. Ed. 2015;54:4349–4352. doi: 10.1002/anie.201411854. PubMed DOI

Ko K. M. Mendecki L. Mirica K. A. Conductive two-dimensional metal-organic frameworks as multifunctional materials. Chem. Commun. 2018;54:7873–7891. doi: 10.1039/C8CC02871K. PubMed DOI

Peng F. Setyawati M. I. Tee J. K. Ding X. Wang J. Nga M. E. Ho H. K. Leong D. T. Nanoparticles promote in vivo breast cancer cell intravasation and extravasation by inducing endothelial leakiness. Nat. Nanotechnol. 2019;14:279–286. doi: 10.1038/s41565-018-0356-z. PubMed DOI

Hmadeh M. Lu Z. Liu Z. Gándara F. Furukawa H. Wan S. Augustyn V. Chang R. Liao L. Zhou F. Perre E. Ozolins V. Suenaga K. Duan X. Dunn B. Yamamto Y. Terasaki O. Yaghi O. M. New porous crystals of expanded metal-catecholate. Chem. Mater. 2012;24:3511–3513. doi: 10.1021/cm301194a. DOI

Barthram A. M. Cleary R. L. Kowallick R. Ward M. D. A new redox-tunable near-IR dye based on a trinuclear ruthenium(II) complex of hexahydroxytriphenylene. Chem. Commun. 1998;24:2695–2696. doi: 10.1039/A807835A. DOI

Pavliček N. Mistry A. Majzik Z. Moll N. Meyer G. Fox D. J. Gross L. Synthesis and characterization of triangulene. Nat. Nanotechnol. 2017;12:308–311. doi: 10.1038/nnano.2016.305. PubMed DOI

Floreano L. Naletto G. Cvetko D. Gotter R. Malvezzi M. Marassi L. Morgante A. Santaniello A. Verdini A. Tommasini F. Tondello G. Performance of the grating-crystal monochromator of the ALOISA beamline at the Elettra Synchrotron. Rev. Sci. Instrum. 1999;70:3855–3864. doi: 10.1063/1.1150001. DOI

Giannozzi P. Baroni S. Bonini N. Calandra M. Car R. Cavazzoni C. Ceresoli D. Chiarotti G. L. Cococcioni M. Dabo I. QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials. J. Phys.: Condens. Matter. 2009;21:395502. doi: 10.1088/0953-8984/21/39/395502. PubMed DOI

Grimme S. Semiempirical GGA-type density functional constructed with a long-range dispersion correction. J. Comput. Chem. 2006;27:1787–1799. doi: 10.1002/jcc.20495. PubMed DOI

Perdew J. P. Burke K. Ernzerhof M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996;77:3865. doi: 10.1103/PhysRevLett.77.3865. PubMed DOI

Rappe A. M. Rabe K. M. Kaxiras E. Joannopoulos J. D. Optimized pseudopentials. Phys. Rev. B: Condens. Matter Mater. Phys. 1990;41:1227. doi: 10.1103/PhysRevB.41.1227. PubMed DOI

Mounet N. Marzari N. First-principles determination of the structural, vibrational and thermodynamic properties of dimaon, graphite, and derivatives. Phys. Rev. B: Condens. Matter Mater. Phys. 2005;71:205214. doi: 10.1103/PhysRevB.71.205214. DOI

Pack J. D. Monkhorst H. J. Special points for Brillouin-zone integrations—a reply. Phys. Rev. B: Solid State. 1977;16:1748. doi: 10.1103/PhysRevB.16.1748. DOI

Blanco J. M. González C. Jelínek P. Ortega J. Flores F. Pérez R. First-principles simulations of STM images: from tunneling to the contact regime. Phys. Rev. B: Condens. Matter Mater. Phys. 2004;70:085405. doi: 10.1103/PhysRevB.70.085405. DOI

Lewis J. P. Jelínek P. Ortega J. Demkov A. A. Trabada D. G. Haycock B. Wang H. Adams G. Tomfohr J. K. Abad E. Wang H. Drabold D. A. Advances and applications in the FIREBALL ab initio tight-binding molecular-dynamics formalism. Phys. Status Solidi B. 2011;248:1989–2007. doi: 10.1002/pssb.201147259. DOI

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...