Copper-assisted oxidation of catechols into quinone derivatives
Status PubMed-not-MEDLINE Language English Country Great Britain, England Media electronic
Document type Journal Article
PubMed
34163992
PubMed Central
PMC8179264
DOI
10.1039/d0sc04883f
PII: d0sc04883f
Knihovny.cz E-resources
- Publication type
- Journal Article MeSH
Catechols are ubiquitous substances often acting as antioxidants, thus of importance in a variety of biological processes. The Fenton and Haber-Weiss processes are thought to transform these molecules into aggressive reactive oxygen species (ROS), a source of oxidative stress and possibly inducing degenerative diseases. Here, using model conditions (ultrahigh vacuum and single crystals), we unveil another process capable of converting catechols into ROSs, namely an intramolecular redox reaction catalysed by a Cu surface. We focus on a tri-catechol, the hexahydroxytriphenylene molecule, and show that this antioxidant is thereby transformed into a semiquinone, as an intermediate product, and then into an even stronger oxidant, a quinone, as final product. We argue that the transformations occur via two intramolecular redox reactions: since the Cu surface cannot oxidise the molecules, the starting catechol and the semiquinone forms each are, at the same time, self-oxidised and self-reduced. Thanks to these reactions, the quinone and semiquinone are able to interact with the substrate by readily accepting electrons donated by the substrate. Our combined experimental surface science and ab initio analysis highlights the key role played by metal nanoparticles in the development of degenerative diseases.
Institute of Physics Academy of Sciences of the Czech Republic 162 00 Praha Czech Republic
Laboratorio TASC CNR IOM Basovizza SS 14 Km 163 5 34149 Trieste Italy
Univ Grenoble Alpes CEA IRIG DEPHY PHELIQS 38000 Grenoble France
Univ Grenoble Alpes CNRS Grenoble INP Institut NEEL 38000 Grenoble France
See more in PubMed
Barclay L. R. C. Edwards C. E. Vinqvist M. R. Media effects on antioxidant activities of phenols and catechols. J. Am. Chem. Soc. 1999;122:6226–6231. doi: 10.1021/ja990878u. DOI
Ruiz-Larrera M. B. Martín C. Navarro R. Lacort M. Miller N. J. Antioxidant activities of estrogens against aqueous and lipophilic radicals; differences between phenol and catechol estrogens. Chem. Phys. Lipids. 2000;105:179–188. doi: 10.1016/S0009-3084(00)00120-1. PubMed DOI
Pierpont C. C. Buchanan R. M. Studies on charge distribution and valence tautomerism in transition metal complexes of catecholate and semiquinonate ligands. Coord. Chem. Rev. 2001;216–217:99–125. doi: 10.1016/S0010-8545(01)00309-5. DOI
Cavalieri E. L. Stack D. E. Devanesan P. D. Todorovic R. Dwivedy I. Higginbotham S. Johansson S. L. Patil K. D. Gross M. L. Gooden J. K. Ramanathan R. Cerny R. L. Rogan E. G. Molecular origin of cancer: Catechol estrogen-3,4-quinones as endogenous tumor initiators. Proc. Natl. Acad. Sci. U. S. A. 1997;94:10937–10942. doi: 10.1073/pnas.94.20.10937. PubMed DOI PMC
Oikawa S. Hirosawa I. Hirakawa K. Kawanishi S. Site specificity and mechanism of oxidative DNA damage induced by carcinogenic catechol. Carcinogenesis. 2001;22:1239–1245. doi: 10.1093/carcin/22.8.1239. PubMed DOI
Hirakawa K. Oikawa S. Hiraku Y. Hirosawa I. Kawanishi S. Catechol and hydroquinone have different redox properties responsible for their differential DNA-damaging ability. Chem. Res. Toxicol. 2002;15:76–82. PubMed
Cavalieri E. L. Li K.-M. Balu N. Saeed M. Devanesan P. Higginbotham S. Zhao J. Gross M. L. Rogan E. G. Catechol ortho-quinones: the electrophilic compounds that form depurinating DNA adducts and could initiate cancer and other diseases. Carcinogenesis. 2002;23:1071–1077. doi: 10.1093/carcin/23.6.1071. PubMed DOI
Cavalieri E. Chakravarti D. Guttenplan J. Hart E. Ingle J. Jankowiak R. Muti P. Rogan E. Russo J. Santen R. Sutter T. Catechol estrogen quinones as initiators of breast and other human cancers: Implications for biomarkers of susceptibility and cancer prevention. Biochim. Biophys. Acta, Rev. Cancer. 2006;1766:63–78. doi: 10.1016/j.bbcan.2006.03.001. PubMed DOI
Zhahid M. Saeed M. Morgan E. G. Cavalieri E. L. Benzene and dopamine catechol quinones could initiate cancer or neurogenic disease. Free Radicals Biol. Med. 2010;48:318–324. doi: 10.1016/j.freeradbiomed.2009.11.002. PubMed DOI PMC
Cavalieri E. L. Rogan E. G. Depurinating estrogen-DNA adducts, generators of cancer initiation: their minimization leads to cancer prevention. Clin. Transl. Med. 2016;5:12. PubMed PMC
Koppenol W. H. The centennial of the Fenton reaction. Free Radicals Biol. Med. 1993;15:645–651. doi: 10.1016/0891-5849(93)90168-T. PubMed DOI
Koppenol W. H. The Haber–Weiss cycle—70 years later. Redox Rep. 2001;6:229–234. doi: 10.1179/135100001101536373. PubMed DOI
Valko M. Rhodes C. J. Moncol J. Izakovic M. Mazur M. Free radicals, metals and antioxidants in oxidative stress-induced cancer. Chem.-Biol. Interact. 2006;160:1–40. doi: 10.1016/j.cbi.2005.12.009. PubMed DOI
Aust S. Chignell C. Bray T. Kalyanaraman B. Mason R. Free radicals in toxicology. Toxicol. Appl. Pharmacol. 1993;120:168–178. doi: 10.1006/taap.1993.1100. PubMed DOI
Abdal Dayem A. Hossain M. K. Lee S. B. Kim K. Saha S. K. Yang G.-M. Choi H. Y. Cho S.-G. The role of reactive oxygen species (ROS) in the biological activities of metallic nanoparticles. Int. J. Mol. Sci. 2017;18:120. doi: 10.3390/ijms18010120. PubMed DOI PMC
Fu P. P. Xia Q. Hwang H.-M. Ray P. C. Yu H. J. Mechanisms of nanotoxicity: generation of reactive oxygen species. J. Food Drug Anal. 2014;22:54–75. PubMed PMC
Shaligram S. Campbell A. Toxicity of copper salts is dependent on solubility profile and cell type tested. Toxicol. In Vitro. 2013;27:844–851. doi: 10.1016/j.tiv.2012.12.026. PubMed DOI
Shi M. de Mesy Bentley K. L. Palui G. Mattoussi H. Elder A. Yang H. The roles of surface chemistry, dissolution rate, and delivered dose in the cytotoxicity of copper nanoparticles. Nanoscale. 2017;9:4739–4750. doi: 10.1039/C6NR09102D. PubMed DOI PMC
Šulce A. Bulke F. Schowalter M. Rosenauer A. Dringen R. Kunz S. Reactive oxygen species (ROS) formation ability and stability of small copper (Cu) nanoparticles (NPs) RSC Adv. 2016;6:76980–76988. doi: 10.1039/C6RA16599K. DOI
Shi M. Kwon H. S. Peng Z. Elder A. Yang H. Effects of surface chemistry on the generation of reactive oxygen species by copper nanoparticles. ACS Nano. 2012;6:2157–2164. doi: 10.1021/nn300445d. PubMed DOI PMC
Rodhe Y. Skoglung S. Wallinder I. O. Potácová Z. Möller R. Copper-based nanoparticles induce high toxicity in leukemic HL60 cells. Toxicol. In Vitro. 2015;29:1711–1719. doi: 10.1016/j.tiv.2015.05.020. PubMed DOI
Treier M. Pignedoli C. A. Laino T. Rieger R. Müllen K. Passerone D. Fasel R. Surface-assisted cyclodehydrogenation provides a synthetic route towards easily processable and chemically tailored nanographenes. Nat. Chem. 2010;3:61–67. doi: 10.1038/nchem.891. PubMed DOI
Di Giovannantonio M. Urgel J. I. Beser U. Yakutovich A. V. Wilhelm J. Pignedoli C. A. Ruffieux P. Narita A. Müllen K. Fasel R. On-surface synthesis of indenofluorene polymers by oxidative five-membered ring formation. J. Am. Chem. Soc. 2018;140:3532–3536. doi: 10.1021/jacs.8b00587. PubMed DOI
Di Santo G. Blankenburg S. Castellarin-Cudia C. Fanetti M. Borghetti P. Sangaletti L. Floreano L. Verdini A. Magnano E. Bondino F. Pignedoli C. A. Nguyen M.-T. Gaspari R. Passerone D. Goldoni A. Supramolecular engineering through temperature-induced chemical modification of 2H-tetraphenylporphyrin on Ag(111): flat phenyl conformation and possible dehydrogenation reactions. Chem.–Eur. J. 2011;17:14354–14359. doi: 10.1002/chem.201102268. PubMed DOI
Coratger R. Calmettes B. Abel M. Porte L. TM observations of the first polymerization steps between hexahydroxy-tri-phenylene and benzene-di-boronic acid molecules. Surf. Sci. 2011;605:831–837. doi: 10.1016/j.susc.2011.01.028. DOI
Marele A. C. Corral I. Sanz P. Mas-Ballesté R. Zamora F. Yáñez M. Gómez-Rodríguez J. M. Some pictures of alcoholic dancing: from simple to complex hydrogen-bonded networks based on polyalcohols. J. Phys. Chem. C. 2013;117:4680–4690. doi: 10.1021/jp312424q. DOI
Tseng T.-C. Urban C. Wang Y. Otero R. Tait S. L. Alcamí M. Écija D. Trelka M. Gallego J. M. Lin N. Charge-transfer-induced structural rearrangements at both sides of organic/metal interfaces. Nat. Chem. 2010;2:374–379. doi: 10.1038/nchem.591. PubMed DOI
Pawlak R. Clair S. Oison V. Abel M. Ourdjini O. Zwaneveld N. A. A. Gigmes D. Bertin D. Nony L. Porte L. Robust supramolecular network on Ag(111): hydrogen-bond enhancement through partial alcohol dehydrogenation. ChemPhysChem. 2009;10:1032–1035. doi: 10.1002/cphc.200900055. PubMed DOI
Fischer S. Papageorgiou A. C. Lloyd J. A. Oh S. C. Diller K. Allegretti F. Klappenberger F. Seitsonen A. P. Reichert J. Barth J. V. Self-assembly and chemical modifications of bisphenol A on Cu(111): interplay between ordering and thermally activated stepwise deprotonation. ACS Nano. 2014;8:207–215. doi: 10.1021/nn4030493. PubMed DOI
Bebensee F. Svane K. Bombis C. Masini F. Klyatskaya S. Besenbacher F. Ruben M. Hammera B. Linderoth T. Adsorption and dehydrogenation of tetrahydroxybenzene on Cu(111) Chem. Commun. 2013;49:9308–9310. doi: 10.1039/C3CC45052J. PubMed DOI
De Marchi F. Galeotti G. Simenas M. Tornau E. E. Pezzella A. MacLeod J. Ebrahimi M. Rosei F. Room-temperature surface-assisted reactivity of a melanin precursor: silver metal-organic coordination versus covalent dimerization on gold. Nanoscale. 2018;10:16721–16729. doi: 10.1039/C8NR04002H. PubMed DOI
Lo Cicero M. Della Pia A. Riello M. Colazzo L. Sedona F. Betti M. G. Sambi M. De Vita A. Mariani C. A long-range ordered array of copper tetrameric units embedded in an on-surface metal organic framework. J. Chem. Phys. 2017;147:214706. doi: 10.1063/1.5004082. PubMed DOI
Giovanelli L. Ourdjini O. Abel M. Pawlak R. Fujii J. Porte L. Themlin J.-M. Clair S. Combined photoemission spectroscopy and scanning tunneling microscopy study of the sequential dehydrogenation of hexahydroxytriphenylene on Ag(111) J. Phys. Chem. C. 2014;118:14899–14904. doi: 10.1021/jp501849h. DOI
Aplincourt P. Bureau C. Anthoine J.-L. Chong D. P. Accurate density functional calculations of core electron binding energies on hydrogen-bonded systems. J. Phys. Chem. A. 2001;105:7364–7370. doi: 10.1021/jp0100194. DOI
Lesiak B. Köver L. Tóth J. Zemek J. Jiricek P. Kromka A. Rangam N. C sp2/sp3 hybridisations in carbon nanomateriale—XPS and (X)AES study. Appl. Surf. Sci. 2018;452:223–231. doi: 10.1016/j.apsusc.2018.04.269. DOI
Bowker M. Madix R. J. XPS, UPS and thermal desorption studies of alcohol adsorption on Cu(110): I. Methanol. Surf. Sci. 1980;95:190–206. doi: 10.1016/0039-6028(80)90135-1. DOI
Bowker M. Madix R. J. XPS, UPS and thermal desorption studies of alcohol adsorption on Cu(110): II. Higher alcohols. Surf. Sci. 1982;116:549–572. doi: 10.1016/0039-6028(82)90364-8. DOI
Zhang R. Liu J. Gao Y. Hua M. Xia B. Knecht P. Papageorgiou A. C. Reichert J. Barth J. V. Xu H. On-surface synthesis of semi-conducting 2D metal-organic framework Cu3(C6O6) exhibiting dispersive electronic bands. Angew. Chem., Int. Ed. 2020;59:2669–2673. doi: 10.1002/anie.201913698. PubMed DOI
Heimel G. Duhm S. Salzmann I. Gerlach A. Strozecka A. Niederhausen J. Bürker C. Hosokai T. Fernandez-Torrente I. Schulze G. Charged and metallic molecular monolayers through surface-induced aromatic stabilization. Nat. Chem. 2013;5:187–194. doi: 10.1038/nchem.1572. PubMed DOI
Francis J. Hitchcock A. Inner-shell spectroscopy of p-benzoquinone, hydroquinone, and phenol: distinguishing quinoid and benzenoid structures. J. Phys. Chem. 1992;96:6598–6610. doi: 10.1021/j100195a018. DOI
Ammond Ch. Bayer A. Held G. Richter B. Schmidt Th. Steinrück H.-P. Dissociation and oxidation of methanol on Cu(110) Surf. Sci. 2002;507–510:845–850. doi: 10.1016/S0039-6028(02)01361-4. DOI
Diller K. Klappenberger F. Marschall M. Hermann K. Nefedov A. Wöll Ch. Barth J. V. Self-metalation of 2H-tetraphenylporphyrin on Cu(111): An x-ray spectroscopy study. J. Chem. Phys. 2012;136:014705. doi: 10.1063/1.3674165. PubMed DOI
Wheeler D. E. Rodriguez J. H. McCusker J. K. Density functional theory analysis of electronic structure variations across the orthoquinone/semiquinone/catechol redox series. J. Phys. Chem. A. 1999;103:4101–4112. doi: 10.1021/jp990166q. DOI
Correa A. Arantes Dantas J. Menezes Correia J. T. Weber Paixão M. Photochemistry of carbonyl groups: application on metal-free reactions. ChemPhotoChem. 2019;3:506–520. doi: 10.1002/cptc.201900044. DOI
Ruiz del Árbol N. Palacio I. Otero-Irurueta G. Martínez J. I. de Andrés P. L. Stetsovych O. Moro-Lagares M. Mutombo P. Svec M. Jelínek P. Cossaro A. Floreano L. Ellis G. J. López M. F. Martín-Gago J. A. On-surface bottom-up synthesis of azine derivatives displaying strong acceptor behavior. Angew. Chem., Int. Ed. 2018;130:8718–8722. doi: 10.1002/ange.201804110. PubMed DOI PMC
Yang L. He X. Dincă M. Triphenylene-bridged trinuclear complexes of Cu: models for spin interactions in two-dimensional electrically conductive metal-organic frameworks. J. Am. Chem. Soc. 2019;141:10475–10480. doi: 10.1021/jacs.9b04822. PubMed DOI
Sheberla D. Sun L. Blood-Forsythe M. A. Er S. Wade C. R. Brozek C. K. Aspuru-Guzik A. Dincă M. High electrical conductivity in Ni3(2,3,6,7,10,11-hexaiminotriphenylene)2, a semiconducting metal-organic graphene analogue. J. Am. Chem. Soc. 2014;136:8859–8862. doi: 10.1021/ja502765n. PubMed DOI
Campbell M. G. Sheberla D. Liu S. F. Swager T. M. Dincă M. Cu3(hexaiminotriphenylene)2: an electrically conductive 2D metal-organic framework for chemiresistive sensing. Angew. Chem., Int. Ed. 2015;54:4349–4352. doi: 10.1002/anie.201411854. PubMed DOI
Ko K. M. Mendecki L. Mirica K. A. Conductive two-dimensional metal-organic frameworks as multifunctional materials. Chem. Commun. 2018;54:7873–7891. doi: 10.1039/C8CC02871K. PubMed DOI
Peng F. Setyawati M. I. Tee J. K. Ding X. Wang J. Nga M. E. Ho H. K. Leong D. T. Nanoparticles promote in vivo breast cancer cell intravasation and extravasation by inducing endothelial leakiness. Nat. Nanotechnol. 2019;14:279–286. doi: 10.1038/s41565-018-0356-z. PubMed DOI
Hmadeh M. Lu Z. Liu Z. Gándara F. Furukawa H. Wan S. Augustyn V. Chang R. Liao L. Zhou F. Perre E. Ozolins V. Suenaga K. Duan X. Dunn B. Yamamto Y. Terasaki O. Yaghi O. M. New porous crystals of expanded metal-catecholate. Chem. Mater. 2012;24:3511–3513. doi: 10.1021/cm301194a. DOI
Barthram A. M. Cleary R. L. Kowallick R. Ward M. D. A new redox-tunable near-IR dye based on a trinuclear ruthenium(II) complex of hexahydroxytriphenylene. Chem. Commun. 1998;24:2695–2696. doi: 10.1039/A807835A. DOI
Pavliček N. Mistry A. Majzik Z. Moll N. Meyer G. Fox D. J. Gross L. Synthesis and characterization of triangulene. Nat. Nanotechnol. 2017;12:308–311. doi: 10.1038/nnano.2016.305. PubMed DOI
Floreano L. Naletto G. Cvetko D. Gotter R. Malvezzi M. Marassi L. Morgante A. Santaniello A. Verdini A. Tommasini F. Tondello G. Performance of the grating-crystal monochromator of the ALOISA beamline at the Elettra Synchrotron. Rev. Sci. Instrum. 1999;70:3855–3864. doi: 10.1063/1.1150001. DOI
Giannozzi P. Baroni S. Bonini N. Calandra M. Car R. Cavazzoni C. Ceresoli D. Chiarotti G. L. Cococcioni M. Dabo I. QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials. J. Phys.: Condens. Matter. 2009;21:395502. doi: 10.1088/0953-8984/21/39/395502. PubMed DOI
Grimme S. Semiempirical GGA-type density functional constructed with a long-range dispersion correction. J. Comput. Chem. 2006;27:1787–1799. doi: 10.1002/jcc.20495. PubMed DOI
Perdew J. P. Burke K. Ernzerhof M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996;77:3865. doi: 10.1103/PhysRevLett.77.3865. PubMed DOI
Rappe A. M. Rabe K. M. Kaxiras E. Joannopoulos J. D. Optimized pseudopentials. Phys. Rev. B: Condens. Matter Mater. Phys. 1990;41:1227. doi: 10.1103/PhysRevB.41.1227. PubMed DOI
Mounet N. Marzari N. First-principles determination of the structural, vibrational and thermodynamic properties of dimaon, graphite, and derivatives. Phys. Rev. B: Condens. Matter Mater. Phys. 2005;71:205214. doi: 10.1103/PhysRevB.71.205214. DOI
Pack J. D. Monkhorst H. J. Special points for Brillouin-zone integrations—a reply. Phys. Rev. B: Solid State. 1977;16:1748. doi: 10.1103/PhysRevB.16.1748. DOI
Blanco J. M. González C. Jelínek P. Ortega J. Flores F. Pérez R. First-principles simulations of STM images: from tunneling to the contact regime. Phys. Rev. B: Condens. Matter Mater. Phys. 2004;70:085405. doi: 10.1103/PhysRevB.70.085405. DOI
Lewis J. P. Jelínek P. Ortega J. Demkov A. A. Trabada D. G. Haycock B. Wang H. Adams G. Tomfohr J. K. Abad E. Wang H. Drabold D. A. Advances and applications in the FIREBALL ab initio tight-binding molecular-dynamics formalism. Phys. Status Solidi B. 2011;248:1989–2007. doi: 10.1002/pssb.201147259. DOI