Myocardial Injury and Cardiac Reserve in Patients With Heart Failure and Preserved Ejection Fraction

. 2018 Jul 03 ; 72 (1) : 29-40.

Jazyk angličtina Země Spojené státy americké Médium print

Typ dokumentu časopisecké články, Research Support, N.I.H., Extramural, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid29957229

Grantová podpora
R01 HL128526 NHLBI NIH HHS - United States
T32 HL007111 NHLBI NIH HHS - United States
U01 HL125205 NHLBI NIH HHS - United States
U10 HL110262 NHLBI NIH HHS - United States
R01 HL126638 NHLBI NIH HHS - United States

Odkazy

PubMed 29957229
PubMed Central PMC6034112
DOI 10.1016/j.jacc.2018.04.039
PII: S0735-1097(18)34659-X
Knihovny.cz E-zdroje

BACKGROUND: Cardiac reserve is depressed in patients with heart failure and preserved ejection fraction (HFpEF). The mechanisms causing this are poorly understood. OBJECTIVES: The authors hypothesized that myocardial injury might contribute to the hemodynamic derangements and cardiac reserve limitations that are present in HFpEF. Markers of cardiomyocyte injury, central hemodynamics, ventricular function, and determinants of cardiac oxygen supply-demand balance were measured. METHODS: Subjects with HFpEF (n = 38) and control subjects without heart failure (n = 20) underwent cardiac catheterization, echocardiography, and expired gas analysis at rest and during exercise. Central venous blood was sampled to measure plasma high-sensitivity troponin T levels as an index of cardiomyocyte injury. RESULTS: Compared with control subjects, troponins were more than 2-fold higher in subjects with HFpEF at rest and during exercise (p < 0.0001). Troponin levels were directly correlated with left ventricular (LV) filling pressures (r = 0.52; p < 0.0001) and diastolic dysfunction (r = -0.43; p = 0.002). Although myocardial oxygen demand was similar, myocardial oxygen supply was depressed in HFpEF, particularly during exercise (coronary perfusion pressure-time integral; 44 ± 9 mm Hg × s × min-1 × l × dl-1 vs. 30 ± 9 mm Hg × s × min-1 × l × dl-1; p < 0.0001), and reduced indices of supply were correlated with greater myocyte injury during exercise (r = -0.44; p = 0.0008). Elevation in troponin with exercise was directly correlated with an inability to augment LV diastolic (r = -0.40; p = 0.02) and systolic reserve (r = -0.57; p = 0.0003), greater increases in LV filling pressures (r = 0.55; p < 0.0001), blunted cardiac output response (r = -0.44; p = 0.002), and more severely depressed aerobic capacity in HFpEF. CONCLUSIONS: Limitations in LV functional reserve and the hemodynamic derangements that develop secondary to these limitations during exercise in HFpEF are correlated with the severity of cardiac injury, assessed by plasma levels of troponin T. Further study is warranted to determine the mechanisms causing myocyte injury in HFpEF and the potential role of ischemia, and to identify and test novel interventions targeted to these mechanisms. (EXEC [Study of Exercise and Heart Function in Patients With Heart Failure and Pulmonary Vascular Disease]; NCT01418248).

Komentář v

PubMed

Zobrazit více v PubMed

Shah SJ, Kitzman DW, Borlaug BA, et al. Phenotype-Specific Treatment of Heart Failure With Preserved Ejection Fraction: A Multiorgan Roadmap. Circulation. 2016;134:73–90. PubMed PMC

Borlaug BA, Melenovsky V, Russell SD, et al. Impaired chronotropic and vasodilator reserves limit exercise capacity in patients with heart failure and a preserved ejection fraction. Circulation. 2006;114:2138–47. PubMed

Tan YT, Wenzelburger F, Lee E, et al. The pathophysiology of heart failure with normal ejection fraction: exercise echocardiography reveals complex abnormalities of both systolic and diastolic ventricular function involving torsion, untwist, and longitudinal motion. J Am Coll Cardiol. 2009;54:36–46. PubMed

Phan TT, Abozguia K, Nallur Shivu G, et al. Heart failure with preserved ejection fraction is characterized by dynamic impairment of active relaxation and contraction of the left ventricle on exercise and associated with myocardial energy deficiency. J Am Coll Cardiol. 2009;54:402–9. PubMed

Borlaug BA, Nishimura RA, Sorajja P, Lam CS, Redfield MM. Exercise Hemodynamics Enhance Diagnosis of Early Heart Failure with Preserved Ejection Fraction. Circ Heart Fail. 2010;3:588–95. PubMed PMC

Borlaug BA, Jaber WA, Ommen SR, Lam CS, Redfield MM, Nishimura RA. Diastolic relaxation and compliance reserve during dynamic exercise in heart failure with preserved ejection fraction. Heart. 2011;97:964–9. PubMed PMC

Borlaug BA, Kane GC, Melenovsky V, Olson TP. Abnormal right ventricular-pulmonary artery coupling with exercise in heart failure with preserved ejection fraction. Eur Heart J. 2016;37:3293–3302. PubMed PMC

Borlaug BA, Olson TP, Lam CS, et al. Global cardiovascular reserve dysfunction in heart failure with preserved ejection fraction. J Am Coll Cardiol. 2010;56:845–54. PubMed PMC

Abudiab MM, Redfield MM, Melenovsky V, et al. Cardiac output response to exercise in relation to metabolic demand in heart failure with preserved ejection fraction. Eur J Heart Fail. 2013;15:776–85. PubMed PMC

Kosmala W, Rojek A, Przewlocka-Kosmala M, Mysiak A, Karolko B, Marwick TH. Contributions of Nondiastolic Factors to Exercise Intolerance in Heart Failure With Preserved Ejection Fraction. J Am Coll Cardiol. 2016;67:659–70. PubMed

Kosmala W, Przewlocka-Kosmala M, Rojek A, Mysiak A, Dabrowski A, Marwick TH. Association of Abnormal Left Ventricular Functional Reserve with Outcome in Heart Failure with Preserved Ejection Fraction. JACC Cardiovasc Imaging. 2017 in press. PubMed

Maeder MT, Thompson BR, Brunner-La Rocca HP, Kaye DM. Hemodynamic basis of exercise limitation in patients with heart failure and normal ejection fraction. J Am Coll Cardiol. 2010;56:855–63. PubMed

van Empel VP, Mariani J, Borlaug BA, Kaye DM. Impaired myocardial oxygen availability contributes to abnormal exercise hemodynamics in heart failure with preserved ejection fraction. J Am Heart Assoc. 2014;3:e001293. PubMed PMC

Dorfs S, Zeh W, Hochholzer W, et al. Pulmonary capillary wedge pressure during exercise and long-term mortality in patients with suspected heart failure with preserved ejection fraction. Eur Heart J. 2014;35:3103–12. PubMed

Paulus WJ, Tschope C. A novel paradigm for heart failure with preserved ejection fraction: comorbidities drive myocardial dysfunction and remodeling through coronary microvascular endothelial inflammation. J Am Coll Cardiol. 2013;62:263–71. PubMed

Franssen C, Chen S, Unger A, et al. Myocardial Microvascular Inflammatory Endothelial Activation in Heart Failure With Preserved Ejection Fraction. JACC Heart Fail. 2016;4:312–24. PubMed

Kato S, Saito N, Kirigaya H, et al. Impairment of Coronary Flow Reserve Evaluated by Phase Contrast Cine-Magnetic Resonance Imaging in Patients With Heart Failure With Preserved Ejection Fraction. J Am Heart Assoc. 2016:5. PubMed PMC

Srivaratharajah K, Coutinho T, deKemp R, et al. Reduced Myocardial Flow in Heart Failure Patients With Preserved Ejection Fraction. Circ Heart Fail. 2016:9. PubMed

Mohammed SF, Majure DT, Redfield MM. Zooming in on the Microvasculature in Heart Failure With Preserved Ejection Fraction. Circ Heart Fail. 2016:9. PubMed PMC

Mohammed SF, Hussain S, Mirzoyev SA, Edwards WD, Maleszewski JJ, Redfield MM. Coronary microvascular rarefaction and myocardial fibrosis in heart failure with preserved ejection fraction. Circulation. 2015;131:550–9. PubMed PMC

Saiki H, Petersen IA, Scott CG, et al. Risk of Heart Failure With Preserved Ejection Fraction in Older Women After Contemporary Radiotherapy for Breast Cancer. Circulation. 2017;135:1388–1396. PubMed PMC

Tschope C, Bock CT, Kasner M, et al. High prevalence of cardiac parvovirus B19 infection in patients with isolated left ventricular diastolic dysfunction. Circulation. 2005;111:879–86. PubMed

Tschope C, Post H. Latent ischaemia as a trigger for a circulus vitiosus of inflammation, fibrosis, and stiffness in HFPEF. Eur J Heart Fail. 2015;17:1210–2. PubMed

Obokata M, Kane GC, Reddy YN, Olson TP, Melenovsky V, Borlaug BA. Role of Diastolic Stress Testing in the Evaluation for Heart Failure With Preserved Ejection Fraction: A Simultaneous Invasive-Echocardiographic Study. Circulation. 2017;135:825–838. PubMed PMC

Andersen MJ, Olson TP, Melenovsky V, Kane GC, Borlaug BA. Differential hemodynamic effects of exercise and volume expansion in people with and without heart failure. Circ Heart Fail. 2015;8:41–8. PubMed

Andersen MJ, Hwang SJ, Kane GC, et al. Enhanced pulmonary vasodilator reserve and abnormal right ventricular: pulmonary artery coupling in heart failure with preserved ejection fraction. Circ Heart Fail. 2015;8:542–50. PubMed

Reddy YNV, Andersen MJ, Obokata M, et al. Arterial Stiffening With Exercise in Patients With Heart Failure and Preserved Ejection Fraction. J Am Coll Cardiol. 2017;70:136–148. PubMed PMC

Buckberg GD, Fixler DE, Archie JP, Hoffman JI. Experimental subendocardial ischemia in dogs with normal coronary arteries. Circ Res. 1972;30:67–81. PubMed

Sarnoff SJ, Braunwald E, Welch GH, Jr, Case RB, Stainsby WN, Macruz R. Hemodynamic determinants of oxygen consumption of the heart with special reference to the tension-time index. Am J Physiol. 1958;192:148–56. PubMed

Hoffman JI, Buckberg GD. The myocardial oxygen supply:demand index revisited. J Am Heart Assoc. 2014;3:e000285. PubMed PMC

Gobel FL, Norstrom LA, Nelson RR, Jorgensen CR, Wang Y. The rate-pressure product as an index of myocardial oxygen consumption during exercise in patients with angina pectoris. Circulation. 1978;57:549–56. PubMed

Nagueh SF, Smiseth OA, Appleton CP, et al. Recommendations for the Evaluation of Left Ventricular Diastolic Function by Echocardiography: An Update from the American Society of Echocardiography and the European Association of Cardiovascular Imaging. J Am Soc Echocardiogr. 2016;29:277–314. PubMed

Turer AT, Addo TA, Martin JL, et al. Myocardial ischemia induced by rapid atrial pacing causes troponin T release detectable by a highly sensitive assay: insights from a coronary sinus sampling study. J Am Coll Cardiol. 2011;57:2398–405. PubMed PMC

Cheng JM, Akkerhuis KM, Battes LC, et al. Biomarkers of heart failure with normal ejection fraction: a systematic review. Eur J Heart Fail. 2013;15:1350–62. PubMed

Saiki H, Moulay G, Guenzel AJ, et al. Experimental cardiac radiation exposure induces ventricular diastolic dysfunction with preserved ejection fraction. Am J Physiol Heart Circ Physiol. 2017;313:H392–H407. PubMed PMC

Hwang SJ, Melenovsky V, Borlaug BA. Implications of coronary artery disease in heart failure with preserved ejection fraction. J Am Coll Cardiol. 2014;63:2817–27. PubMed

Konerman MC, Greenberg JC, Kolias TJ, et al. Reduced Myocardial Flow Reserve is Associated with Diastolic Dysfunction and Decreased Left Atrial Strain in Patients with Normal Ejection Fraction and Epicardial Perfusion. J Card Fail. 2017 PubMed PMC

Shah KS, Maisel AS, Fonarow GC. Troponin in Heart Failure. Heart Failure Clin. 2018;14:57–64. PubMed

Park KC, Gaze DC, Collinson PO, Marber MS. Cardiac troponins: from myocardial infarction to chronic disease. Cardiovasc Res. 2017;113:1708–1718. PubMed PMC

Pandey A, Golwala H, Sheng S, et al. Factors Associated With and Prognostic Implications of Cardiac Troponin Elevation in Decompensated Heart Failure With Preserved Ejection Fraction: Findings From the American Heart Association Get With The Guidelines-Heart Failure Program. JAMA Cardiol. 2017;2:136–145. PubMed

Felker GM, Mentz RJ, Teerlink JR, et al. Serial high sensitivity cardiac troponin T measurement in acute heart failure: insights from the RELAX-AHF study. Eur J Heart Fail. 2015;17:1262–70. PubMed

Zobrazit více v PubMed

ClinicalTrials.gov
NCT01418248

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...