Isoflavones Production and Possible Mechanism of Their Exudation in Genista tinctoria L. Suspension Culture after Treatment with Vanadium Compounds
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
PubMed
29970854
PubMed Central
PMC6099964
DOI
10.3390/molecules23071619
PII: molecules23071619
Knihovny.cz E-zdroje
- Klíčová slova
- Dyer’s Greenweed, elicitation, heavy metals, plasma membrane transport,
- MeSH
- buněčné kultury metody MeSH
- Genista chemie cytologie účinky léků MeSH
- isoflavony chemie MeSH
- sekundární metabolismus účinky léků MeSH
- sloučeniny vanadu farmakologie MeSH
- vanadáty farmakologie MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- ammonium metavanadate MeSH Prohlížeč
- isoflavony MeSH
- sloučeniny vanadu MeSH
- vanadáty MeSH
- vanadyl sulfate MeSH Prohlížeč
The family Fabaceae traditionally serves as a food and herbal remedies source. Certain plants serve for treatment of menopausal symptoms based on a presence of typical secondary metabolites, isoflavones. Beside soybean and clovers, other plants or cultures in vitro can produce these molecules. A cultivation in vitro can be enhanced by elicitation that stimulates metabolites biosynthesis via stress reaction. Vanadium compounds have been already described as potential elicitors, and the aim of this study was to determine the impact of NH₄VO₃ and VOSO₄ solutions on isoflavones production in Genista tinctoria L. cell cultures. The significant increase of isoflavones content, such as genistin, genistein, or formononetin, was measured in a nutrient medium or dry mass after NH₄VO₃ treatment for 24 or 48 h. The possible transport mechanism of isoflavones release as a result of elicitation was further evaluated. An incubation with different transport inhibitors prior to elicitation took effect on isoflavones content in the medium. However, there was a non-ended result for particular metabolites such as genistein and daidzein, where ATP-binding cassette (ABC) or, alternatively, multidrug and toxin extrusion (MATE) proteins can participate. Possible elicitation by some inhibitors was discussed as a result of their pleiotropic effect. Despite this outcome, the determination of the transport mechanism is an important step for identification of the specific transporter.
Zobrazit více v PubMed
Troalen L.G., Phillips A.S., Peggie D.A., Barran P.E., Hulme A.N. Historical textile dyeing with Genista tinctoria L.: A comprehensive study by UPLC-MS/MS analysis. Anal. Methods. 2014;6:8915–8923. doi: 10.1039/C4AY01509F. DOI
Fakir H., Korkmaz M., Güller B. Medicinal plant diversity of western Mediterrenean region in Turkey. J. Appl. Biol. Sci. 2009;3:30–40.
Tero-Vescan A., Vari C.E., Vlase L. Alkaloid content of some potential isoflavonoids sources (native genista species). Long-term safety implications. Farmacia. 2014;62:1109–1117.
Wink M. Quinolizidine alkaloids: Biochemistry, metabolism, and function in plants and cell suspension cultures. Planta Med. 1987;53:509–514. doi: 10.1055/s-2006-962797. PubMed DOI
Tero-Vescan A., Imre S., Vari C.E., Oşan A., Dogaru M.T., Csedö C. Determination of some isoflavonoids and flavonoids from Genista tinctoria L. by HPLC-UV. Farmacia. 2009;57:120–127.
Winkel-Shirley B. Biosynthesis of flavonoids and effects of stress. Curr. Opin. Plant Biol. 2002;5:218–223. doi: 10.1016/S1369-5266(02)00256-X. PubMed DOI
Schulze E.D., Beck E., Hohenstein K.M. Environment as stress factor: Stress physiology of plants. In: Czeschlik D., editor. Plant Ecology. Springer; Berlin/Heidelberg, Germany: 2005. pp. 7–21.
Davies K.M., Schwinn K.E. Molecular biology and biotechnology of flavonoid biosynthesis. In: Andersen Ø.M., Markham K.R., editors. Flavonoids: Chemistry, Biochemistry and Applications. CRC Taylor and Francis; Boca Raton, FL, USA: 2006. pp. 143–218.
Viehweger K. How plants cope with heavy metals. Bot. Stud. 2014;55:1–12. doi: 10.1186/1999-3110-55-35. PubMed DOI PMC
Panichev N., Mandiwana K., Moema D., Molatlhegi R., Ngobeni P. Distribution of vanadium(V) species between soil and plants in the vicinity of vanadium mine. J. Hazard. Mater. 2006;137:649–653. doi: 10.1016/j.jhazmat.2006.03.006. PubMed DOI
Larsson M.A., Baken S., Gustafsson J.P., Hadialhejazi G., Smolders E. Vanadium bioavailability and toxicity to soil microorganisms and plants. Environ. Toxicol. Chem. 2013;32:2266–2273. doi: 10.1002/etc.2322. PubMed DOI
Crans D.C., Smee J.J., Gaidamauskas E., Yang L. The chemistry and biochemistry of vanadium and the biological activities exerted by vanadium compounds. Chem. Rev. 2004;104:849–902. doi: 10.1021/cr020607t. PubMed DOI
Korbecki J., Baranowska-Bosiacka I., Gutowska I., Chlubek D. Biochemical and medical importance of vanadium compounds. Acta Biochim. Pol. 2012;59:195–200. PubMed
Gaspar T., Franck T., Bisbis B., Kevers C. Concepts in plant stress physiology. Application to plant tissue cultures. Plant Growth Regul. 2002;37:263–286. doi: 10.1023/A:1020835304842. DOI
Smith J.I., Smart N.J., Misawa M., Kurz W.G.W., Tallevi S.G., DiCosmo F. Increased accumulation of indole alkaloids by some cell lines of Catharanthus roseus in response to addition of vanadyl sulphate. Plant Cell Rep. 1987;6:142–145. doi: 10.1007/BF00276673. PubMed DOI
Palazón J., Cusidó R.M., Bonfill M., Mallol A., Moyano E., Morales C., Piñol M.T. Elicitation of different Panax ginseng transformed root phenotypes for an improved ginsenoside production. Plant Physiol. Biochem. 2003;41:1019–1025. doi: 10.1016/j.plaphy.2003.09.002. DOI
Sánchez T., Martín S., Saco D. Some responses of two Nicotiana tabacum L. cultivars exposed to vanadium. J. Plant Nutr. 2014;37:777–784. doi: 10.1080/01904167.2013.873456. DOI
Hattori T., Ohta Y. Induction of phenylalanine ammonia-lyase activation and isoflavone glucoside accumulation in suspension-cultured cells of red bean, Vigna angularis, by phytoalexin elicitors, vanadate, and elevation of medium pH. Plant Cell Physiol. 1985;26:1101–1110. doi: 10.1093/oxfordjournals.pcp.a077006. DOI
Hagendoorn M.J.M., Traas T.P., Boon J.J., van der Plas L.H.W. Orthovanadate induced lignin production, in batch and continuous cultures of Petunia hybrida. J. Plant Physiol. 1990;137:72–80. doi: 10.1016/S0176-1617(11)80014-3. DOI
Wagner G.J., Hrazdina G. Endoplasmic reticulum as a site of phenylpropanoid and flavonoid metabolism in Hippeastrum. Plant Physiol. 1984;74:901–906. doi: 10.1104/pp.74.4.901. PubMed DOI PMC
Procházková D., Boušová I., Wilhelmová N. Antioxidant and prooxidant properties of flavonoids. Fitoterapia. 2011;82:513–523. doi: 10.1016/j.fitote.2011.01.018. PubMed DOI
Zhao J. Flavonoid transport mechanisms: How to go, and with whom. Trends Plant Sci. 2015;20:576–585. doi: 10.1016/j.tplants.2015.06.007. PubMed DOI
Prieto D., Corchete P. Transport of flavonolignans to the culture medium of elicited cell suspensions of Silybum marianum. J. Plant Physiol. 2014;171:63–68. doi: 10.1016/j.jplph.2013.10.005. PubMed DOI
Klein M., Martinoia E., Hoffmann-Thoma G., Weissenböck G. A membrane-potential dependent ABC-like transporter mediates the vacuolar uptake of rye flavone glucuronides: Regulation of glucuronide uptake by glutathione and its conjugates. Plant J. 2000;21:289–304. doi: 10.1046/j.1365-313x.2000.00684.x. PubMed DOI
Shoji T., Inai K., Yazaki Y., Sato Y., Takase H., Shitan N., Yazaki K., Goto Y., Toyooka K., Matsuoka K., et al. Multidrug and toxic compound extrusion-type transporters implicated in vacuolar sequestration of nicotine in tobacco roots. Plant. Physiol. 2008;149:708–718. doi: 10.1104/pp.108.132811. PubMed DOI PMC
Dean J.V., Mills J.D. Uptake of salicylic acid 2-O-β-d-glucose into soybean tonoplast vesicles by an ATP-binding cassette transporter-type mechanism. Physiol. Plant. 2004;120:603–612. doi: 10.1111/j.0031-9317.2004.0263.x. PubMed DOI
Wang Y.J., Wu Y.F., Xue F., Wu Z.X., Xue Y.P., Zheng Y.G., Shen Y.C. Isolation of brefeldin A from Eupenicillium brefeldianum broth using macroporous resin adsorption chromatography. J. Chromatogr. B. 2012;895–896:146–153. doi: 10.1016/j.jchromb.2012.03.033. PubMed DOI
Mossessova E., Corpina R.A., Goldberg J. Crystal structure of ARF1·Sec7 complexed with Brefeldin A and its implications for the guanine nucleotide exchange mechanism. Mol. Cell. 2003;12:1403–1411. doi: 10.1016/S1097-2765(03)00475-1. PubMed DOI
Klausner R.D., Donaldson J.G., Lippincott-Schwartz J. Brefeldin A: Insights into the control of membrane traffic and organelle structure. J. Cell Biol. 1992;116:1071–1080. doi: 10.1083/jcb.116.5.1071. PubMed DOI PMC
Villegas M., Sommarin M., Brodelius P.E. Effects of sodium orthovanadate on benzophenanthridine alkaloid formation and distribution in cell suspension cultures of Eschscholtzia californica. Plant Physiol. Biochem. 2000;38:233–241. doi: 10.1016/S0981-9428(00)00736-1. DOI
Hunke S., Dröse S., Schneider E. Vanadate and bafilomycin A1are potent inhibitors of the ATPase activity of the reconstituted bacterial ATP-Binding Cassette transporter for maltose (MalFGK2) Biochem. Biophys. Res. Commun. 1995;216:589–594. doi: 10.1006/bbrc.1995.2663. PubMed DOI
Frangne N., Eggmann T., Koblischke C., Weissenbock G., Martinoia E., Klein M. Flavone glucoside uptake into barley mesophyll and Arabidopsis cell culture vacuoles. Energization occurs by H+-antiport and ATP-binding cassette-type mechanisms. Plant Physiol. 2002;128:726–733. doi: 10.1104/pp.010590. PubMed DOI PMC
Potschka H., Baltes S., Löscher W. Inhibition of multidrug transporters by verapamil or probenecid does not alter blood-brain barrier penetration of levetiracetam in rats. Epilepsy Res. 2004;58:85–91. doi: 10.1016/j.eplepsyres.2003.12.007. PubMed DOI
Terasaka K., Sakaia K., Sato F., Yamamoto H., Yazaki K. Thalictrum minus cell cultures and ABC-like transporter. Phytochemistry. 2003;62:483–489. doi: 10.1016/S0031-9422(02)00548-4. PubMed DOI
Payen L., Delugin L., Courtois A., Trinquart Y., Guillouzo A., Fardel O. The sulphonylurea glibenclamide inhibits multidrug resistance protein (MRP1) activity in human lung cancer cells. Br. J. Pharmacol. 2001;132:778–784. doi: 10.1038/sj.bjp.0703863. PubMed DOI PMC
Gaedeke N., Klein M., Kolukisaoglu U., Forestier C., Müller A., Ansorge M., Becker D., Mamnun Y., Kuchler K., Schulz B., et al. The Arabidopsis thaliana ABC transporter AtMRP5 controls root development and stomata movement. EMBO J. 2001;20:1875–1887. doi: 10.1093/emboj/20.8.1875. PubMed DOI PMC
Kaplan D.I., Adriano D.C., Carlson C.L., Sajwan K.S. Vanadium: Toxicity and accumulation by beans. Water. Air. Soil Pollut. 1990;49:81–91. doi: 10.1007/BF00279512. DOI
Saco D., Martín S., San José P. Vanadium distribution in roots and leaves of Phaseolus vulgaris: Morphological and ultrastructural effects. Biol. Plant. 2013;57:128–132. doi: 10.1007/s10535-012-0133-z. DOI
Schützendübel A., Polle A. Plant responses to abiotic stresses: Heavy metal-induced oxidative stress and protection by mycorrhization. J. Exp. Bot. 2002;53:1351–1365. doi: 10.1093/jexbot/53.372.1351. PubMed DOI
Shi X., Dalal N.S. NADPH-dependent flavoenzymes catalyze one electron reduction of metal ions and molecular oxygen and generate hydroxyl radicals. FEBS Lett. 1990;276:189–191. doi: 10.1016/0014-5793(90)80539-U. PubMed DOI
Ye Y., Ding Y., Jiang Q., Wang F., Sun J., Zhu C. The role of receptor-like protein kinases (RLKs) in abiotic stress response in plants. Plant Cell Rep. 2017;36:235–242. doi: 10.1007/s00299-016-2084-x. PubMed DOI
Steffens M., Ettl F., Kranz D., Kindl H. Vanadate mimics effects of fungal cell wall in eliciting gene activation in plant cell cultures. Planta. 1989;177:160–168. doi: 10.1007/BF00392804. PubMed DOI
Armero J., Tena M. Possible role of plasma membrane H+-ATPase in the elicitation of phytoalexin and related isoflavone root secretion in chickpea (Cicer arietinum L.) seedlings. Plant Sci. 2001;161:791–798. doi: 10.1016/S0168-9452(01)00472-1. DOI
Michalak A. Phenolic compounds and their antioxidant activity in plants growing under heavy metal stress. Pol. J. Environ. Stud. 2006;15:523–530.
Pawlak-Sprada S., Stobiecki M., Deckert J. Activation of phenylpropanoid pathway in legume plants exposed to heavy metals. Part II. Profiling of isoflavonoids and their glycoconjugates induced in roots of lupine (Lupinus luteus) seedlings treated with cadmium and lead. Acta Biochim. Pol. 2011;58:217–223. PubMed
Huang C., Zhong J.J. Elicitation of ginsenoside biosynthesis in cell cultures of Panax ginseng by vanadate. Process Biochem. 2013;48:1227–1234. doi: 10.1016/j.procbio.2013.05.019. PubMed DOI
Namdeo A.G. Plant cell elicitation for production of secondary metabolites: A review. Pharmacogn. Rev. 2007;1:69–79. doi: 10.1016/S0168-9452(01)00490-3. DOI
Cai Z., Kastell A., Knorr D., Smetanska I. Exudation: An expanding technique for continuous production and release of secondary metabolites from plant cell suspension and hairy root cultures. Plant Cell Rep. 2012;31:461–477. doi: 10.1007/s00299-011-1165-0. PubMed DOI
Luczkiewicz M., Kokotkiewicz A., Glod D. Plant growth regulators affect biosynthesis and accumulation profile of isoflavone phytoestrogens in high-productive in vitro cultures of Genista tinctoria. Plant Cell. Tissue Organ Cult. 2014;118:419–429. doi: 10.1007/s11240-014-0494-4. DOI
Sugiyama A., Shitan N., Yazaki K. Involvement of a soybean ATP-binding cassette-type transporter in the secretion of genistein, a signal flavonoid in legume-Rhizobium symbiosis. Plant Physiol. 2007;144:2000–2008. doi: 10.1104/pp.107.096727. PubMed DOI PMC
Zhao J., Dixon R.A. MATE transporters facilitate vacuolar uptake of epicatechin 3′-O-glucoside for proanthocyanidin biosynthesis in Medicago truncatula and Arabidopsis. Plant Cell Online. 2009;21:2323–2340. doi: 10.1105/tpc.109.067819. PubMed DOI PMC
Sirikantaramas S., Sudo H., Asano T., Yamazaki M., Saito K. Transport of camptothecin in hairy roots of Ophiorrhiza pumila. Phytochemistry. 2007;68:2881–2886. doi: 10.1016/j.phytochem.2007.08.028. PubMed DOI
Jeandet P., Hébrard C., Deville M.A., Cordelier S., Dorey S., Aziz A., Crouzet J. Deciphering the role of phytoalexins in plant-microorganism interactions and human health. Molecules. 2014;19:18033–18056. doi: 10.3390/molecules191118033. PubMed DOI PMC
Buer C.S., Muday G.K., Djordjevic M.A. Flavonoids are differentially taken up and transported long distances in Arabidopsis. PLANT Physiol. 2007;145:478–490. doi: 10.1104/pp.107.101824. PubMed DOI PMC
Shitan N. Secondary metabolites in plants: Transport and self-tolerance mechanisms. Biosci. Biotechnol. Biochem. 2016;80:1283–1293. doi: 10.1080/09168451.2016.1151344. PubMed DOI
Banasiak J., Biała W., Staszków A., Swarcewicz B., Kȩpczyńska E., Figlerowicz M., Jasiński M. A Medicago truncatula ABC transporter belonging to subfamily G modulates the level of isoflavonoids. J. Exp. Bot. 2013;64:1005–1015. doi: 10.1093/jxb/ers380. PubMed DOI
Alejandro S., Lee Y., Tohge T., Sudre D., Osorio S., Park J., Bovet L., Lee Y., Geldner N., Fernie A.R., et al. AtABCG29 is a monolignol transporter involved in lignin biosynthesis. Curr. Biol. 2012;22:1207–1212. doi: 10.1016/j.cub.2012.04.064. PubMed DOI
Miao Y.C., Liu C.J. ATP-binding cassette-like transporters are involved in the transport of lignin precursors across plasma and vacuolar membranes. Proc. Natl. Acad. Sci. USA. 2010;107:22728–22733. doi: 10.1073/pnas.1007747108. PubMed DOI PMC
Saito K., Yonekura-Sakakibara K., Nakabayashi R., Higashi Y., Yamazaki M., Tohge T., Fernie A.R. The flavonoid biosynthetic pathway in Arabidopsis: Structural and genetic diversity. Plant Physiol. Biochem. 2013;72:21–34. doi: 10.1016/j.plaphy.2013.02.001. PubMed DOI
Zhao J., Huhman D., Shadle G., He X.Z., Sumner L.W., Tang Y., Dixon R.A. MATE2 Mediates Vacuolar Sequestration of Flavonoid Glycosides and Glycoside Malonates in Medicago truncatula. Plant Cell. 2011;23:1536–1555. doi: 10.1105/tpc.110.080804. PubMed DOI PMC
Goodman C.D., Casati P., Walbot V. A multidrug resistance-associated protein involved in anthocyanin transport in Zea mays. Plant Cell. 2004;16:1812–1826. doi: 10.1105/tpc.022574. PubMed DOI PMC
Francisco R.M., Regalado A., Ageorges A., Burla B.J., Bassin B., Eisenach C., Zarrouk O., Vialet S., Marlin T., Chaves M.M., et al. ABCC1, an ATP binding cassette protein from grape berry, transports anthocyanidin 3-O-glucosides. Plant Cell. 2013;25:1840–1854. doi: 10.1105/tpc.112.102152. PubMed DOI PMC
Chen L., Liu Y., Liu H., Kang L., Geng J., Gai Y., Ding Y., Sun H., Li Y. Identification and expression analysis of MATE genes involved in flavonoid transport in blueberry plants. PLoS ONE. 2015;10:e0118578. doi: 10.1371/journal.pone.0118578. PubMed DOI PMC
Tsuyama T., Kawai R., Shitan N., Matoh T., Sugiyama J., Yoshinaga A., Takabe K., Fujita M., Yazaki K. Proton-dependent coniferin transport, a common major transport event in differentiating xylem tissue of woody plants. Plant Physiol. 2013;162:918–926. doi: 10.1104/pp.113.214957. PubMed DOI PMC
Searle B.M., Higashino H., Khalil F., Bogden J.D., Tokushige A., Tamura H., Kino M., Aviv A. Vanadate effect on the Na,K-ATPase and the Na-K pump in in vitro-grown rat vascular smooth muscle cells. Circ. Res. 1983;53:186–191. doi: 10.1161/01.RES.53.2.186. PubMed DOI
O’neill S.D., Spanswick R.M. Effects of vanadate on the plasma membrane ATPase of red beet and corn. Plant Physiol. 1984;75:586–591. doi: 10.1104/pp.75.3.586. PubMed DOI PMC
North P., Post R.L. Inhibition of (Na,K)-ATPase by tetravalent vanadium. J. Biol. Chem. 1984;259:4971–4978. PubMed
Udvardi M.K., Day D.A. Electrogenic ATPase Activity on the Peribacteroid Membrane of Soybean (Glycine max L.) Root Nodules. Plant Physiol. 1989;90:982–987. doi: 10.1104/pp.90.3.982. PubMed DOI PMC
Kitamura S. Transport of flavonoids: From cytosolic synthesis to vacuolar accumulation. In: Grotewold E., editor. The Science of Flavonoids. Springer; New York, NY, USA: 2006. pp. 123–146.
Ichino T., Fuji K., Ueda H., Takahashi H., Koumoto Y., Takagi J., Tamura K., Sasaki R., Aoki K., Shimada T., et al. GFS9/TT9 contributes to intracellular membrane trafficking and flavonoid accumulation in Arabidopsis thaliana. Plant J. 2014;80:410–423. doi: 10.1111/tpj.12637. PubMed DOI
Filippi A., Petrussa E., Braidot E. Flavonoid facilitated/passive transport: Characterization of quercetin microsomal uptake by a DPBA-dependent assay. Biochim. Biophys. Acta Bioen. 2016;1857:e64. doi: 10.1016/j.bbabio.2016.04.162. DOI
Schenk R.U., Hildebrandt A.C. Medium and techniques for induction and growth of monocotyledonous and dicotyledonous plant cell cultures. Can. J. Bot. 1972;50:199–204. doi: 10.1139/b72-026. DOI
Kubeš J., Tůmová L., Martin J., Vildová A., Hendrychová H., Sojková K. The production of isoflavonoids in Genista tinctoria L. cell suspension culture after abiotic stressors treatment. Nat. Prod. Res. 2014;28:2253–2263. doi: 10.1080/14786419.2014.938336. PubMed DOI