Could Prolonged Usage of GPS Navigation Implemented in Augmented Reality Smart Glasses Affect Hippocampal Functional Connectivity?
Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
30009166
PubMed Central
PMC6020662
DOI
10.1155/2018/2716134
Knihovny.cz E-zdroje
- MeSH
- dospělí MeSH
- geografické informační systémy * MeSH
- hipokampus patofyziologie MeSH
- lidé MeSH
- magnetická rezonanční tomografie * MeSH
- mozeček MeSH
- prostorová navigace * MeSH
- spánkový lalok MeSH
- virtuální realita * MeSH
- Check Tag
- dospělí MeSH
- lidé MeSH
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
BACKGROUND: Augmented reality (AR) glasses with GPS navigation represent the rapidly evolving technology which spares (and externalizes) navigational capacities. Regarding the expected everyday usage of this device, its impact on neuroplastic brain changes and navigation abilities should be evaluated. AIMS: This study aimed to assess possible changes in functional connectivity (FC) of hippocampus and other brain regions involved in spatial navigation. METHODS: Thirty-three healthy participants completed two resting state functional magnetic resonance imaging (rsfMRI) measurements at the baseline and after 3 months. For this period, the experimental group (n = 17) has had used AR device (Vuzix M100) with incorporated GPS guidance system during navigation in real world. Participants from the control group (n = 16) have not used any GPS device while navigating during walking. The rsfMRI FC of right and left hippocampi was analyzed using a seed-driven approach. Virtual city task was used to test navigational abilities both before and after the usage of AR device. RESULTS: We identified strong functional coupling of right and left hippocampi at the baseline (p < 0.05, FDR corrected). Mild changes in bilateral hippocampal FC (p < 0.05, FDR uncorrected) were observed in both assessed groups mainly between the bilateral hippocampi and between each hippocampus and temporal regions and cerebellum. However, the experimental group showed FC decrease after three months of using GPS navigation implemented in AR glasses in contrast to FC increase in the control group without such intervention. Importantly, no effect of intervention on navigational abilities was observed. DISCUSSION: Our observation supports the assumption that externalization of spatial navigation to technological device (GPS in AR glasses) can decrease the functional coupling between hippocampus and associated brain regions. Considering some limitations of the present study, further studies should elucidate the mechanism of the observed changes and their impact on cognitive abilities.
Zobrazit více v PubMed
Bostrom N., Savulescu J. Human Enhancement Ethics: The State of the Debate. Oxford, England: Oxford University Press; 2008.
Žáčková E. Člověk a nové technologie. 1st. Plzeň, Czech Republic: ZČU v Plzni; 2014.
Gamberini L., Orso V., Beretta A., Jacucci G., Spagnolli A., Rimondi R. Evaluating User Experience of Augmented Reality Eyeglasses. Studies in Health Technology and Informatics. 2015;219:28–32. doi: 10.3233/978-1-61499-595-1-28. PubMed DOI
McKendrick R., Parasuraman R., Murtza R., et al. Into the wild: neuroergonomic differentiation of hand-held and augmented reality wearable displays during outdoor navigation with functional near infrared spectroscopy. Frontiers in Human Neuroscience. 2016;10, article 216 doi: 10.3389/fnhum.2016.00216. PubMed DOI PMC
Münzer S., Zimmer H. D., Schwalm M., Baus J., Aslan I. Computer-assisted navigation and the acquisition of route and survey knowledge. Journal of Environmental Psychology. 2006;26(4):300–308. doi: 10.1016/j.jenvp.2006.08.001. DOI
Leshed G., Velden T., Rieger O., Kot B., Sengers P. In-car GPS navigation: Engagement with and disengagement from the environment. Proceedings of the 26th Annual CHI Conference on Human Factors in Computing Systems, CHI 2008; April 2008; ita. pp. 1675–1684. DOI
McKinlay R. Use or lose our navigation skills. Nature. 2016;531(7596):573–575. doi: 10.1038/531573a. PubMed DOI
Edwards L. Study suggests reliance on GPS may reduce hippocampus function as we age. n.d:
Brooks Hays. GPS navigation turns off part of the brain, UPI.com, (n.d,
Woollett K., Maguire E. Acquiring “the Knowledge” of London's Layout Drives Structural Brain Changes. Current Biology. 2011;21(24):2109–2114. doi: 10.1016/j.cub.2011.11.018. PubMed DOI PMC
Maguire E. A., Gadian D. G., Johnsrude I. S., et al. Navigation-related structural change in the hippocampi of taxi drivers. Proceedings of the National Acadamy of Sciences of the United States of America. 2000;97(8):4398–4403. doi: 10.1073/pnas.070039597. PubMed DOI PMC
Maguire E. A., Spiers H. J., Good C. D., Hartley T., Frackowiak R. S. J., Burgess N. Navigation expertise and the human hippocampus: A structural brain imaging analysis. Hippocampus. 2003;13(2):250–259. doi: 10.1002/hipo.10087. PubMed DOI
Maguire E. A., Nannery R., Spiers H. J. Navigation around London by a taxi driver with bilateral hippocampal lesions. Brain. 2006;129(11):2894–2907. doi: 10.1093/brain/awl286. PubMed DOI
Javadi A.-H., Emo B., Howard L. R., et al. Hippocampal and prefrontal processing of network topology to simulate the future. Nature Communications. 2017;8 doi: 10.1038/ncomms14652.14652 PubMed DOI PMC
Bonner-Jackson A., Mahmoud S., Miller J., Banks S. J. Verbal and non-verbal memory and hippocampal volumes in a memory clinic population. Alzheimer’s Research & Therapy. 2015;7(1, article no. 61) doi: 10.1186/s13195-015-0147-9. PubMed DOI PMC
Burgess N., Maguire E. A., O'Keefe J. The human hippocampus and spatial and episodic memory. Neuron. 2002;35(4):625–641. doi: 10.1016/S0896-6273(02)00830-9. PubMed DOI
Bird C. M., Vargha-Khadem F., Burgess N. Impaired memory for scenes but not faces in developmental hippocampal amnesia: A case study. Neuropsychologia. 2008;46(4):1050–1059. doi: 10.1016/j.neuropsychologia.2007.11.007. PubMed DOI
Burgess N. Spatial memory: how egocentric and allocentric combine. Trends in Cognitive Sciences. 2006;10(12):551–557. doi: 10.1016/j.tics.2006.10.005. PubMed DOI
Epstein R. A. Parahippocampal and retrosplenial contributions to human spatial navigation. Trends in Cognitive Sciences. 2008;12(10):388–396. doi: 10.1016/j.tics.2008.07.004. PubMed DOI PMC
Hartley T., Maguire E. A., Spiers H. J., Burgess N. The well-worn route and the path less traveled: Distinct neural bases of route following and wayfinding in humans. Neuron. 2003;37(5):877–888. doi: 10.1016/S0896-6273(03)00095-3. PubMed DOI
Boccia M., Nemmi F., Guariglia C. Neuropsychology of environmental navigation in humans: Review and meta-analysis of fMRI studies in healthy participants. Neuropsychology Review. 2014;24(4):236–251. doi: 10.1007/s11065-014-9247-8. PubMed DOI PMC
Rochefort C., Lefort J., Rondi-Reig L. The cerebellum: A new key structure in the navigation system. Frontiers in Neural Circuits. 2013;(2013) doi: 10.3389/fncir.2013.00035. PubMed DOI PMC
Papanicolaou A. C., Simos P. G., Castillo E. M., Breier J. I., Katz J. S., Wright A. A. The hippocampus and memory of verbal and pictorial material. Learn. Mem. 2002;9:99–104. doi: 10.1101/lm.44302. PubMed DOI PMC
Zackova E., Hranicka J., Soutner D., Zitka T., Tihelka D. Impact of long-term wearing of augmented reality glasses on outdoor spatial orientation
Fajnerova I., Hejtmanek L., Rydlo H., et al. Human cognitive enhancement tested in virtual city environment. In: Sharkey A. A., Rizzo P., editors. Proceedings of the Proc. 11th Int. Conf. Disabil. Virtual Real. Assoc. Technol. (ICDVRAT 2016), ICDVRAT. University of Reading; 2016; Reading, UK. pp. 295–298.
Technologies Unity. “UnityⓇ Pro” software, https://unity3d.com/
Whitfield-Gabrieli S., Nieto-Castanon A. Conn: a functional connectivity toolbox for correlated and anticorrelated brain networks. Brain Connectivity. 2012;2(3):125–141. doi: 10.1089/brain.2012.0073. PubMed DOI
Hlinka J., Paluš M., Vejmelka M., Mantini D., Corbetta M. Functional connectivity in resting-state fMRI: Is linear correlation sufficient? NeuroImage. 2011;54(3):2218–2225. doi: 10.1016/j.neuroimage.2010.08.042. PubMed DOI PMC
Greenwood P. M. Functional Plasticity in Cognitive Aging: Review and Hypothesis. Neuropsychology. 2007;21(6):657–673. doi: 10.1037/0894-4105.21.6.657. PubMed DOI
May A. Experience-dependent structural plasticity in the adult human brain. Trends in Cognitive Sciences. 2011;15(10):475–482. doi: 10.1016/j.tics.2011.08.002. PubMed DOI
Pons T. P., Garraghty P. E., Ommaya A. K., Kaas J. H., Taub E., Mishkin M. Massive cortical reorganization after sensory deafferentation in adult macaques. Science. 1991;252(5014):1857–1860. doi: 10.1126/science.1843843. PubMed DOI
Gaser C., Schlaug G. Brain structures differ between musicians and non-musicians. The Journal of Neuroscience. 2003;23(27):9240–9245. doi: 10.1523/JNEUROSCI.23-27-09240.2003. PubMed DOI PMC
Draganski B., May A. Training-induced structural changes in the adult human brain. Behavioural Brain Research. 2008;192(1):137–142. doi: 10.1016/j.bbr.2008.02.015. PubMed DOI
Rosenzweig M. R., Bennett E. L. Psychobiology of plasticity: effects of training and experience on brain and behavior. Behavioural Brain Research. 1996;78(1):57–65. doi: 10.1016/0166-4328(95)00216-2. PubMed DOI
Kramer A. F., Bherer L., Colcombe S. J., Dong W., Greenough W. T. Environmental influences on cognitive and brain plasticity during aging. Journals of Gerontology—Series A: Biological Sciences and Medical Sciences. 2004;59(9):940–957. doi: 10.1093/gerona/59.9.m940. PubMed DOI
Marmeleira J. An examination of the mechanisms underlying the effects of physical activity on brain and cognition. European Review of Aging and Physical Activity. 2013;10(2):83–94. doi: 10.1007/s11556-012-0105-5. DOI
Wagner G., Gussew A., Köhler S., et al. Resting state functional connectivity of the hippocampus along the anterior-posterior axis and its association with glutamatergic metabolism. Cortex. 2016;81:104–117. doi: 10.1016/j.cortex.2016.03.022. PubMed DOI
Gloor P., Salanova V., Olivier A., Quesney L. F. The human dorsal hippocampal commissure: An anatomically identifiable and functional pathway. Brain. 1993;116(5):1249–1273. doi: 10.1093/brain/116.5.1249. PubMed DOI
Rombouts S. A. R. B., Barkhof F., Witter M. P., Machielsen W. C. M., Scheltens P. Anterior medial temporal lobe activation during attempted retrieval of encoded visuospatial scenes: An event-related fMRI study. NeuroImage. 2001;14(1 I):67–76. doi: 10.1006/nimg.2001.0799. PubMed DOI
Wang L., Negreira A., LaViolette P., Bakkour A., Sperling R. A., Dickerson B. C. Intrinsic interhemispheric hippocampal functional connectivity predicts individual differences in memory performance ability. Hippocampus. 2010;20(3):345–351. doi: 10.1002/hipo.20771. PubMed DOI PMC
Dickerson B. C., Miller S. L., Greve D. N., et al. Prefrontal-hippocampal-fusiform activity during encoding predicts intraindividual differences in free recall ability: An event-related functional-anatomic MRI study. Hippocampus. 2007;17(11):1060–1070. doi: 10.1002/hipo.20338. PubMed DOI PMC
Rombouts S., Stam C., Kuijer J., Scheltens P., Barkhof F. Identifying confounds to increase specificity during a “no task condition”. NeuroImage. 2003;20(2):1236–1245. doi: 10.1016/S1053-8119(03)00386-0. PubMed DOI
Greicius M. D., Srivastava G., Reiss A. L., Menon V. Default-mode network activity distinguishes Alzheimer's disease from healthy aging: evidence from functional MRI. Proceedings of the National Acadamy of Sciences of the United States of America. 2004;101(13):4637–4642. doi: 10.1073/pnas.0308627101. PubMed DOI PMC
Aminoff E. M., Gronau N., Bar M. The parahippocampal cortex mediates both spatial and non-spatial associative processing. Journal of Vision. 2005;5(8):907–907. doi: 10.1167/5.8.907. DOI
Ekstrom A. D., Bookheimer S. Y. Spatial and temporal episodic memory retrieval recruit dissociable functional networks in the human brain. Learning & Memory. 2007;14(10):645–654. doi: 10.1101/lm.575107. PubMed DOI PMC
Stoodley C. J., Schmahmann J. D. Evidence for topographic organization in the cerebellum of motor control versus cognitive and affective processing. Cortex. 2010;46(7):831–844. doi: 10.1016/j.cortex.2009.11.008. PubMed DOI PMC
Lampit A., Hallock H., Suo C., Naismith S. L., Valenzuela M. Cognitive training-induced short-term functional and long-term structural plastic change is related to gains in global cognition in healthy older adults: a pilot study. Frontiers in Aging Neuroscience. 2015;7, article 014 doi: 10.3389/fnagi.2015.00014. PubMed DOI PMC