Orientation of Laurdan in Phospholipid Bilayers Influences Its Fluorescence: Quantum Mechanics and Classical Molecular Dynamics Study
Language English Country Switzerland Media electronic
Document type Journal Article
PubMed
30011800
PubMed Central
PMC6100051
DOI
10.3390/molecules23071707
PII: molecules23071707
Knihovny.cz E-resources
- Keywords
- DFT, Laurdan, TDDFT, classical molecular dynamics, fluorescence,
- MeSH
- 1,2-Dipalmitoylphosphatidylcholine chemistry MeSH
- 2-Naphthylamine analogs & derivatives chemistry MeSH
- Models, Chemical * MeSH
- Fluorescence MeSH
- Phosphatidylcholines chemistry MeSH
- Quantum Theory MeSH
- Laurates chemistry MeSH
- Lipid Bilayers chemistry MeSH
- Molecular Dynamics Simulation * MeSH
- Publication type
- Journal Article MeSH
- Names of Substances
- 1,2-Dipalmitoylphosphatidylcholine MeSH
- 1,2-oleoylphosphatidylcholine MeSH Browser
- 2-Naphthylamine MeSH
- Phosphatidylcholines MeSH
- Laurates MeSH
- laurdan MeSH Browser
- Lipid Bilayers MeSH
Fluidity of lipid membranes is known to play an important role in the functioning of living organisms. The fluorescent probe Laurdan embedded in a lipid membrane is typically used to assess the fluidity state of lipid bilayers by utilizing the sensitivity of Laurdan emission to the properties of its lipid environment. In particular, Laurdan fluorescence is sensitive to gel vs liquid⁻crystalline phases of lipids, which is demonstrated in different emission of the dye in these two phases. Still, the exact mechanism of the environment effects on Laurdan emission is not understood. Herein, we utilize dipalmitoylphosphatidylcholine (DPPC) and dioleoylphosphatidylcholine (DOPC) lipid bilayers, which at room temperature represent gel and liquid⁻crystalline phases, respectively. We simulate absorption and emission spectra of Laurdan in both DOPC and DPPC bilayers with quantum chemical and classical molecular dynamics methods. We demonstrate that Laurdan is incorporated in heterogeneous fashion in both DOPC and DPPC bilayers, and that its fluorescence depends on the details of this embedding.
See more in PubMed
Lakowicz J. Instrumentation for fluorescence spectroscopy.Principles of Fluorescence Spectroscopy. Springer; New York, NY, USA: 1999.
Bagatolli L., Gratton E. Two-photon fluorescence microscopy observation of shape changes at the phase transition in phospholipid giant unilamellar vesicles. Biophy. J. 1999;77:2090–2101. doi: 10.1016/S0006-3495(99)77050-5. PubMed DOI PMC
Simons K., Gerl M.J. Revitalizing membrane rafts: New tools and insights. Nat. Rev. Mol. Cell Biol. 2010;11:688–699. doi: 10.1038/nrm2977. PubMed DOI
Parasassi T., De Stasio G., Ravagnan G., Rusch R., Gratton E. Quantitation of lipid phases in phospholipid vesicles by the generalized polarization of laurdan fluorescence. Biophy. J. 1991;60:179–189. doi: 10.1016/S0006-3495(91)82041-0. PubMed DOI PMC
Barucha-Kraszewska J., Kraszewski S., Ramseyer C. Will c-laurdan dethrone laurdan in fluorescent solvent relaxation techniques for lipid membrane studies? Langmuir. 2013;29:1174–1182. doi: 10.1021/la304235r. PubMed DOI
Osella S., Murugan N.A., Jena N.K., Knippenberg S. Investigation into biological environments through (non) linear optics: A multiscale study of laurdan derivatives. J. Chem. Theory Comput. 2016;12:6169–6181. doi: 10.1021/acs.jctc.6b00906. PubMed DOI
Cwiklik L., Aquino A.J.A., Vazdar M., Jurkiewicz P., Pittner J., Hof M., Lischka H. Absorption and fluorescence of prodan in phospholipid bilayers: A combined quantum mechanics and classical molecular dynamics study. J. Phys. Chem. A. 2011;115:11428–11437. doi: 10.1021/jp205966b. PubMed DOI
Runge E., Gross E.K. Density-functional theory for time-dependent systems. Phys. Rev. Lett. 1984;52:997. doi: 10.1103/PhysRevLett.52.997. DOI
Becke A.D. Density-functional exchange-energy approximation with correct asymptotic behavior. Phys. Rev. A. 1988;38:3098. doi: 10.1103/PhysRevA.38.3098. PubMed DOI
Adamo C., Barone V. Toward reliable density functional methods without adjustable parameters: The pbe0 model. J. Chem. Phys. 1999;110:6158–6170. doi: 10.1063/1.478522. DOI
Kendall R.A., Dunning T.H., Jr., Harrison R.J. Electron affinities of the first-row atoms revisited. Systematic basis sets and wave functions. J. Chem. Phys. 1992;96:6796–6806. doi: 10.1063/1.462569. DOI
Ahlrichs R., Bär M., Häser M., Horn H., Kölmel C. Electronic structure calculations on workstation computers: The program system turbomole. Chem. Phys. Lett. 1989;162:165–169. doi: 10.1016/0009-2614(89)85118-8. DOI
Jambeck J.P., Lyubartsev A.P. Derivation and systematic validation of a refined all-atom force field for phosphatidylcholine lipids. J. Phys. Chem. B. 2012;116:3164–3179. doi: 10.1021/jp212503e. PubMed DOI PMC
Vega C., de Miguel E. Surface tension of the most popular models of water by using the test-area simulation method. J. Chem. Phys. 2007;126:154707. doi: 10.1063/1.2715577. PubMed DOI
Wang J., Wang W., Kollman P.A., Case D.A. Antechamber: An accessory software package for molecular mechanical calculations. J. Am. Chem. Soc. 2001;222:U403.
Wang J.M., Wolf R.M., Caldwell J.W., Kollman P.A., Case D.A. Development and testing of a general amber force field (vol 25, pg 1157, 2004) J. Comput. Chem. 2005;26:1157–1174. PubMed
Frisch M., Trucks G., Schlegel H.B., Scuseria G., Robb M., Cheeseman J., Scalmani G., Barone V., Mennucci B., Petersson G. Gaussian 09, Revision A. 02. Gaussian Inc.; Wallingford, CT, USA: 2009.
Barucha-Kraszewska J., Kraszewski S., Jurkiewicz P., Ramseyer C., Hof M. Numerical studies of the membrane fluorescent dyes dynamics in ground and excited states. Biochim. Biophys. Acta-Biomembr. 2010;1798:1724–1734. doi: 10.1016/j.bbamem.2010.05.020. PubMed DOI
Lamoureux G., Harder E., Vorobyov I.V., Roux B., MacKerell A.D. A polarizable model of water for molecular dynamics simulations of biomolecules. Chem. Phys. Lett. 2006;418:245–249. doi: 10.1016/j.cplett.2005.10.135. DOI
Pederzoli M., Sobek L., Brabec J., Kowalski K., Cwiklik L., Pittner J. Fluorescence of prodan in water: A computational qm/mm md study. Chem. Phys. Lett. 2014;597:57–62. doi: 10.1016/j.cplett.2014.02.031. DOI
Essmann U., Perera L., Berkowitz M.L., Darden T., Lee H., Pedersen L.G. A smooth particle mesh ewald method. J. Chem. Phys. 1995;103:8577–8593. doi: 10.1063/1.470117. DOI
Hess B., Kutzner C., van der Spoel D., Lindahl E. Gromacs 4: Algorithms for highly efficient, load-balanced, and scalable molecular simulation. J. Chem. Theory Comput. 2008;4:435–447. doi: 10.1021/ct700301q. PubMed DOI
Barbatti M., Ruckenbauer M., Plasser F., Pittner J., Granucci G., Persico M., Lischka H. Newton-x: A surface-hopping program for nonadiabatic molecular dynamics. Rev. Comput. Mol. Sci. 2014;4:26–33. doi: 10.1002/wcms.1158. DOI