Auxiliary Biomembranes as a Directional Delivery System To Control Biological Events in Cell-Laden Tissue-Engineering Scaffolds
Status PubMed-not-MEDLINE Language English Country United States Media print-electronic
Document type Journal Article
PubMed
30023620
PubMed Central
PMC6044576
DOI
10.1021/acsomega.6b00502
Knihovny.cz E-resources
- Publication type
- Journal Article MeSH
Delivery of growth factors is an indispensable part of tissue engineering. Here, we describe a detachable membrane-based release system composed of extracellular matrix components that can be attached to hydrogels to achieve directional release of bioactive molecules. This way, the release of cytokines/growth factors can be started at a desired point of tissue maturation or directly in vivo. As a model, we develop thin films of an interpenetrating network of double-cross-linked gelatin and hyaluronic acid derivatives. The use of the auxiliary release system with vascular endothelial growth factor results in extensive sprouting by encapsulated vascular endothelial cells. The presence of the release system with interleukin-4 results in clustering of encapsulated macrophages with a significant decrease in M1 macrophages (proinflammatory). This system can be used in conjunction with three-dimensional structures as an auxiliary system to control artificial tissue maturation and growth.
Contipro Biotech S R O Dolni Dobrouc 401 561 02 Dolni Dobrouc Czech Republic
INSERM UMR 1121 11 rue Humann 67085 Strasbourg France
See more in PubMed
Lee K.; Silva E. A.; Mooney D. J. Growth factor delivery-based tissue engineering: general approaches and a review of recent developments. J. R. Soc., Interface 2011, 8, 153–170. 10.1098/rsif.2010.0223. PubMed DOI PMC
Franz S.; Rammelt S.; Scharnweber D.; Simon J. C. Immune responses to implants – A review of the implications for the design of immunomodulatory biomaterials. Biomaterials 2011, 32, 6692–6709. 10.1016/j.biomaterials.2011.05.078. PubMed DOI
Dumont C. M.; Park J.; Shea L. D. Controlled release strategies for modulating immune responses to promote tissue regeneration. J. Controlled Release 2015, 219, 155–166. 10.1016/j.jconrel.2015.08.014. PubMed DOI PMC
Schultz P.; Vautier D.; Richert L.; Jessel N.; Haikel Y.; Schaaf P.; Voegel J.-C.; Ogier J.; Debry C. Polyelectrolyte multilayers functionalized by a synthetic analogue of an anti-inflammatory peptide, α-MSH, for coating a tracheal prosthesis. Biomaterials 2005, 26, 2621–2630. 10.1016/j.biomaterials.2004.06.049. PubMed DOI
Lee K. Y.; Mooney D. J. Hydrogels for tissue engineering. Chem. Rev. 2001, 101, 1869–1880. 10.1021/cr000108x. PubMed DOI
Barthes J.; Özçelik H.; Hindié M.; Ndreu-Halili A.; Hasan A.; Vrana N. E. Cell microenvironment engineering and monitoring for tissue engineering and regenerative medicine: the recent advances. BioMed Res. Int. 2014, 2014, 92190510.1155/2014/921905. PubMed DOI PMC
Zhao W.; McCallum S. A.; Xiao Z.; Zhang F.; Linhardt R. J. Binding affinities of vascular endothelial growth factor (VEGF) for heparin-derived oligosaccharides. Biosci. Rep. 2012, 32, 71–81. 10.1042/BSR20110077. PubMed DOI PMC
Jackson D. G. The lymphatics revisited - New perspectives from the hyaluronan receptor LYVE-1. Trends Cardiovasc. Med. 2003, 13, 1–7. 10.1016/S1050-1738(02)00189-5. PubMed DOI
Kreuger J.; Spillmann D.; Li J.-P.; Lindahl U. Interactions between heparan sulfate and proteins: the concept of specificity. J. Cell Biol. 2006, 174, 323–327. 10.1083/jcb.200604035. PubMed DOI PMC
Zhu Y.; Oganesian A.; Keene D. R.; Sandell L. J. Type IIA Procollagen Containing the Cysteine-rich Amino Propeptide Is Deposited in the Extracellular Matrix of Prechondrogenic Tissue and Binds to TGF-β1 and BMP-2. J. Cell Biol. 1999, 144, 1069–1080. 10.1083/jcb.144.5.1069. PubMed DOI PMC
Chaubaroux C.; Perrin-Schmitt F.; Senger B.; Vidal L.; Voegel J.-C.; Schaaf P.; Haikel Y.; Boulmedais F.; Lavalle P.; Hemmerlé J. Cell Alignment Driven by Mechanically Induced Collagen Fiber Alignment in Collagen/Alginate Coatings. Tissue Eng., Part C 2015, 21, 881–888. 10.1089/ten.tec.2014.0479. PubMed DOI PMC
Barthes J.; Vrana N. E.; Özçelik H.; Gahoual R.; François Y. N.; Bacharouche J.; Francius G.; Hemmerlé J.; Metz-Boutigue M.-H.; Schaaf P. Priming cells for their final destination: microenvironment controlled cell culture by a modular ECM-mimicking feeder film. Biomater. Sci. 2015, 3, 1302–1311. 10.1039/C5BM00172B. PubMed DOI
Xu X.; Jha A. K.; Harrington D. A.; Farach-Carson M. C.; Jia X. Hyaluronic acid-based hydrogels: from a natural polysaccharide to complex networks. Soft Matter 2012, 8, 3280–3294. 10.1039/c2sm06463d. PubMed DOI PMC
Collins M. N.; Birkinshaw C. Hyaluronic acid based scaffolds for tissue engineering—A review. Carbohydr. Polym. 2013, 92, 1262–1279. 10.1016/j.carbpol.2012.10.028. PubMed DOI
Vercruysse K. P.; Marecak D. M.; Marecek J. F.; Prestwich G. D. Synthesis and in vitro degradation of new polyvalent hydrazide cross-linked hydrogels of hyaluronic acid. Bioconjugate Chem. 1997, 8, 686–694. 10.1021/bc9701095. PubMed DOI
Bencherif S. A.; Srinivasan A.; Horkay F.; Hollinger J. O.; Matyjaszewski K.; Washburn N. R. Influence of the degree of methacrylation on hyaluronic acid hydrogels properties. Biomaterials 2008, 29, 1739–1749. 10.1016/j.biomaterials.2007.11.047. PubMed DOI
Camci-Unal G.; Cuttica D.; Annabi N.; Demarchi D.; Khademhosseini A. Synthesis and characterization of hybrid hyaluronic acid-gelatin hydrogels. Biomacromolecules 2013, 14, 1085–1092. 10.1021/bm3019856. PubMed DOI PMC
Chen J. P.; Leu Y. L.; Fang C. L.; Chen C. H.; Fang J. Y. Thermosensitive hydrogels composed of hyaluronic acid and gelatin as carriers for the intravesical administration of cisplatin. J. Pharm. Sci. 2011, 100, 655–666. 10.1002/jps.22309. PubMed DOI
Knopf-Marques H.; Pravda M.; Wolfova L.; Velebny V.; Schaaf P.; Vrana N. E.; Lavalle P. Hyaluronic Acid and Its Derivatives in Coating and Delivery Systems: Applications in Tissue Engineering, Regenerative Medicine and Immunomodulation. Adv. Healthcare Mater. 2016, 5, 2841.10.1002/adhm.201600316. PubMed DOI
Dong Z.; Wang Q.; Du Y. Alginate/gelatin blend films and their properties for drug controlled release. J. Membr. Sci. 2006, 280, 37–44. 10.1016/j.memsci.2006.01.002. DOI
Draye J.-P.; Delaey B.; Van de Voorde A.; Van Den Bulcke A.; Bogdanov B.; Schacht E. In vitro release characteristics of bioactive molecules from dextran dialdehyde cross-linked gelatin hydrogel films. Biomaterials 1998, 19, 99–107. 10.1016/S0142-9612(97)00164-6. PubMed DOI
Yamamoto M.; Ikada Y.; Tabata Y. Controlled release of growth factors based on biodegradation of gelatin hydrogel. J. Biomater. Sci., Polym. Ed. 2001, 12, 77–88. 10.1163/156856201744461. PubMed DOI
Young S.; Wong M.; Tabata Y.; Mikos A. G. Gelatin as a delivery vehicle for the controlled release of bioactive molecules. J. Controlled Release 2005, 109, 256–274. 10.1016/j.jconrel.2005.09.023. PubMed DOI
Zhang J.; Senger B.; Vautier D.; Picart C.; Schaaf P.; Voegel J.-C.; Lavalle P. Natural polyelectrolyte films based on layer-by layer deposition of collagen and hyaluronic acid. Biomaterials 2005, 26, 3353–3361. 10.1016/j.biomaterials.2004.08.019. PubMed DOI
Highberger J. H.; Gross J.; Schmitt F. O. The interaction of mucoprotein with soluble collagen; an electron microscope study. Proc. Natl. Acad. Sci. U.S.A. 1951, 37, 286–91. 10.1073/pnas.37.5.286. PubMed DOI PMC
Jin R.; Lou B.; Lin C. Tyrosinase-mediated in situ forming hydrogels from biodegradable chondroitin sulfate-tyramine conjugates. Polym. Int. 2013, 62, 353–361. 10.1002/pi.4306. DOI
Santoro M.; Tatara A. M.; Mikos A. G. Gelatin carriers for drug and cell delivery in tissue engineering. J. Controlled Release 2014, 190, 210–218. 10.1016/j.jconrel.2014.04.014. PubMed DOI PMC
Hosack L. W.; Firpo M. A.; Scott J. A.; Prestwich G. D.; Peattie R. A. Microvascular maturity elicited in tissue treated with cytokine-loaded hyaluronan-based hydrogels. Biomaterials 2008, 29, 2336–2347. 10.1016/j.biomaterials.2008.01.033. PubMed DOI PMC
Sinha V. R.; Singla A. K.; Wadhawan S.; Kaushik R.; Kumria R.; Bansal K.; Dhawan S. Chitosan microspheres as a potential carrier for drugs. Int. J. Pharm. 2004, 274, 1–33. 10.1016/j.ijpharm.2003.12.026. PubMed DOI
Wang Y.; Kim H.-J.; Vunjak-Novakovic G.; Kaplan D. L. Stem cell-based tissue engineering with silk biomaterials. Biomaterials 2006, 27, 6064–6082. 10.1016/j.biomaterials.2006.07.008. PubMed DOI
Lee S. H.; Lee Y.; Chun Y. W.; Crowder S. W.; Young P. P.; Park K. D.; Sung H. J. In Situ Crosslinkable Gelatin Hydrogels for Vasculogenic Induction and Delivery of Mesenchymal Stem Cells. Adv. Funct. Mater. 2014, 24, 6771–6781. 10.1002/adfm.201401110. PubMed DOI PMC
Huang Y.; Luo Q.; Zha G.; Zhang J.; Li X.; Zhao S.; Li X. Biomimetic ECM coatings for controlled release of rhBMP-2: construction and biological evaluation. Biomater. Sci. 2014, 2, 980–989. 10.1039/c3bm60254k. PubMed DOI
Crouzier T.; Ren K.; Nicolas C.; Roy C.; Picart C. Layer-By-Layer Films as a Biomimetic Reservoir for rhBMP-2 Delivery: Controlled Differentiation of Myoblasts to Osteoblasts. Small 2009, 5, 598–608. 10.1002/smll.200800804. PubMed DOI
Barthes J.; Mertz D.; Bach C.; Metz-Boutigue M.-H.; Senger B.; Voegel J.-C.; Schaaf P.; Lavalle P. Stretch-induced biodegradation of polyelectrolyte multilayer films for drug release. Langmuir 2012, 28, 13550–13554. 10.1021/la302550q. PubMed DOI
Patel Z. S.; Yamamoto M.; Ueda H.; Tabata Y.; Mikos A. G. Biodegradable gelatin microparticles as delivery systems for the controlled release of bone morphogenetic protein-2. Acta Biomater. 2008, 4, 1126–1138. 10.1016/j.actbio.2008.04.002. PubMed DOI PMC
Li A.; Dubey S.; Varney M. L.; Dave B. J.; Singh R. K. IL-8 directly enhanced endothelial cell survival, proliferation, and matrix metalloproteinases production and regulated angiogenesis. J. Immunol. 2003, 170, 3369–3376. 10.4049/jimmunol.170.6.3369. PubMed DOI
Tsuchiya S.; Kobayashi Y.; Goto Y.; Okumura H.; Nakae S.; Konno T.; Tada K. Induction of maturation in cultured human monocytic leukemia cells by a phorbol diester. Cancer Res. 1982, 42, 1530–1536. PubMed
Dimitriadis E. K.; Horkay F.; Maresca J.; Kachar B.; Chadwick R. S. Determination of elastic moduli of thin layers of soft material using the atomic force microscope. Biophys. J. 2002, 82, 2798–2810. 10.1016/S0006-3495(02)75620-8. PubMed DOI PMC
Polyakov P.; Soussen C.; Duan J.; Duval J. F.; Brie D.; Francius G. Automated force volume image processing for biological samples. PLoS One 2011, 6, e1888710.1371/journal.pone.0018887. PubMed DOI PMC
Rasband W. S.ImageJ, U.S.; National Institutes of Health: Bethesda, Maryland, 1997–2011.