Ascorbic Acid and Glucosinolate Levels in New Czech Cabbage Cultivars: Effect of Production System and Fungal Infection
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
PubMed
30046026
PubMed Central
PMC6222616
DOI
10.3390/molecules23081855
PII: molecules23081855
Knihovny.cz E-zdroje
- Klíčová slova
- Albatros cultivar, Alternaria brassicicola, ascorbic acid, ecological system, fungal infection, glucosinolates, head cabbage, integrated system, target cultivar,
- MeSH
- antioxidancia chemie metabolismus MeSH
- Brassica chemie mikrobiologie MeSH
- glukosinoláty chemie metabolismus MeSH
- houby fyziologie MeSH
- kyselina askorbová chemie metabolismus MeSH
- lidé MeSH
- rostlinné extrakty chemie metabolismus MeSH
- životní prostředí MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- Geografické názvy
- Česká republika MeSH
- Názvy látek
- antioxidancia MeSH
- glukosinoláty MeSH
- kyselina askorbová MeSH
- rostlinné extrakty MeSH
Nutritional value and disease-preventive effects of cabbage are well-known. Levels of the antioxidant compounds ascorbic acid (AA) and glucosinolates (GSL) in new Czech cabbage cultivars were determined in the context of different production systems. The contents of AA and GSLs in cabbage biomass were determined by HPLC. Individual GSLs were identified according to their exact masses with sinigrin used as the external standard. Artificial infection with A. brassicicola generally raised the AA levels. The major GSLs (≥10 mg kg-1) were glucobrassicin, sinigrin, and glucoiberin. Indole and aliphatic GSLs were present, but no aromatic ones were detected. Ecological growth conditions and the artificial fungal infection increased the total content of GSLs and, also, of the methoxylated indole GSLs. Sulforaphane, iberin, indole-3-carbinol, and ascorbigen resulting from the hydrolysis of GSLs were found in both cultivars. The amounts and profiles of GSLs present in the two Czech cultivars demonstrated their good nutritional value. The decomposition products sulforaphane, iberin, indole-3-carbinol, and ascorbigen detected improve its health-promoting qualities and represent a suitable component of the human diet.
Zobrazit více v PubMed
Temple N.J. Antioxidants and disease: More questions than answers. Nutr. Res. 2000;20:449–459. doi: 10.1016/S0271-5317(00)00138-X. DOI
Podsedek A. Natural antioxidants and antioxidant capacity of Brassica vegetables: A review. LWT-Food Sci. Technol. 2007;40:1–11. doi: 10.1016/j.lwt.2005.07.023. DOI
Majkowska-Gadomska J., Wierzbicka B. Content of Basic Nutrients and Minerals in Heads of Selected Varieties of Red Cabbage (Brasicca oleracea var. capitata f. rubra) Pol. J. Environ. Stud. 2008;17:295–298.
Trdan S., Vali N., Andjus L., Vovk I., Martelanc M., Simonovska B., Jerman J., Vidrih R., Vidrih M., Žnidar D. Which plant compounds influence the natural resistance of cabbage against onion thrips (Thrips tabaci Lindeman) Acta Phytopathol. Entomol. Hung. 2008;43:385–395. doi: 10.1556/APhyt.43.2008.2.23. DOI
Koudela M., Petrikova K. Nutrients content and yield in selected cultivars of leaf lettuce (Lactuca sativa L. var. crispa) Hortic. Sci. 2008;35:99–106. doi: 10.17221/3/2008-HORTSCI. DOI
Penas E., Frias J., Matrinez-Villaluenga C., Vidal-Valverde C. Bioactive compounds, myrosinase aktivity, and antioxidant capacity of white cabbages grown in different locations of Spain. J. Agric. Food Chem. 2011;20:3772–3779. doi: 10.1021/jf200356m. PubMed DOI
Vogtmann H., Matthies K., Kehres B., Meier-Ploeger A. Enhanced food quality induced by compost applications. In: Hoitnik H.A.J., Keener H.M., editors. Science and Engineering of Composting. Renaissance; Worthington, OH, USA: 1993. pp. 645–667.
Franczuk J., Zaniewicz-Bajkowska A., Kosterna E., Rosa R., Pniewska I., Olszewski W. The effect of cover plants on the yield and content of selected components of cabbage varieties. Acta Scientiarum Polonorum. Hortorum Cultus. 2010;9:23–30.
Bavec M., Turinek M., Mlakar S.G., Mikola N., Bavec F. Some internal quality properties of white cabbage from different farming systems. In: Mourao I., Aksoy U., editors. ISHS Acta Horticulturae 933, Proceedings of the XXVIII International Horticultural Congress on Science and Horticulture for People (IHC2010): International Symposium on Organic Horticulture: Productivity and Sustainability; Lisbon, Portugal. 22–27 August 2010; Leuven, Belgium: International Society for Horticultural Science; 2012. pp. 577–583.
Castro A., Aires A., Rosa E., Bloem E., Stulen I., De Kok L.J. Distribution of glucosinolates in Brassica oleracea cultivars. Phyton. 2004;44:133–143.
Haneklaus S., Bloem E., Schnug E. Disease control by sulfur induced resistence. Asp. Appl. Biol. 2006;79:221–224.
Haneklaus S., Bloem E., Schnug E. Sulfur interactions in crop ecosystems. In: Hawkesford M.J., De Kok L.J., editors. Sulfur in Plants an Ecological Perspective. Springer Science & Business Media; Berlin, Germany: 2007. pp. 17–58.
Antonious G., Bomford M., Vincelli P. Screening Brassica species for glucosinolate content. J. Environ. Sci. Health Part B. 2009;44:311–316. doi: 10.1080/03601230902728476. PubMed DOI
Van Dam N.M., Tytgat T.O.G., Kirkegaard J.A. Root and shoot glucosinolates: A comparison of their diversity, function and interactions in natural and managed ecosystems. Phytochem. Rev. 2009;8:171–186. doi: 10.1007/s11101-008-9101-9. DOI
Yan X., Chen S. Regulation of plant glucosinolate metabolism. Planta. 2007;226:1343–1352. doi: 10.1007/s00425-007-0627-7. PubMed DOI
Variyar P.S., Banerjee A., Akkarakaran J.J., Suprasanna P. Role of glucosinolates in plant stress tolerance. In: Ahmad P., Rasool S., editors. Emerging Technologies and Management of Crop Stress Tolerance. Volume 1. Elsevier Inc.; New York, NY, USA: 2014. pp. 271–291.
Bellostas N., Sorensen A.D., Sorensen J.C., Sorensen H. Genetic variation and metabolism of glucosinolates. Adv. Bot. Res. 2007;45:369–415. doi: 10.1016/S0065-2296(07)45013-3. DOI
Burrow M., Zhang Z.Y., Ober J.A., Lambrix V.M., Wittstock U., Gershenzon J., Kliebenstein D.J. ESP and ESM1 mediate indol-3-acetonitrile production from indol-3-ylmethyl glucosinolate in Arabidopsis. Phytochemistry. 2008;69:663–671. doi: 10.1016/j.phytochem.2007.08.027. PubMed DOI
Ciska E., Martyniak-Przybyszewska B., Kozlowska H. Content of glucosinolates in cruciferous vegetables grown at the same site for two years under different climatic conditions. J. Agric. Food Chem. 2000;48:2862–2867. doi: 10.1021/jf981373a. PubMed DOI
Mayton H.S., Oliver C., Vaughn S.F., Loria R. Correlation of fungicidal aktivity of Brassica species with allyl isothiocyanate production in macerated leaf tissue. Phytopathology. 1996;86:267–271. doi: 10.1094/Phyto-86-267. DOI
Brader G., Tas E., Palva E.T. Jasmonate-dependent induction of indole glucosinolates in Arabidopsis by culture filtrates of the nonspecific pathogen Erwinia carotovora. Plant Physiol. 2001;126:849–860. doi: 10.1104/pp.126.2.849. PubMed DOI PMC
Pedras M.S.C., Sorensen J.L. Phytoalexin accumulation and production of antifungal compounds by the crucifer wasabi. Phytochemistry. 1998;49:1959–1965. doi: 10.1016/S0031-9422(98)00424-5. DOI
Tierens K., Thomma B.P.H., Brouwer M., Schmidt J., Kistner K., Porzel A., Mauch-Mani B., Cammue B.P.A., Broekaert W.F. Study of the role ofantimicrobial glucosinolate-derived isothiocyanates in resistence of Arabidopsis to microbial pathogens. Plant Physiol. 2001;125:1688–1699. doi: 10.1104/pp.125.4.1688. PubMed DOI PMC
Hasegawa T., Yamada K., Kosemura S., Yamamura S., Hasegawa K. Phototropic stimulation induces the conversion of glucosinolate to phototropism-regulating substances of radish hypocotyls. Phytochemistry. 2000;54:275–279. doi: 10.1016/S0031-9422(00)00080-7. PubMed DOI
Mithen R.F. Glucosinolates and their degradation products. Adv. Bot. Res. 2001;35:213–262. doi: 10.1016/S0065-2296(01)35008-5. DOI
Halkier B.A., Gershenzon J. Biology and biochemistry of glucosinolates. Annu. Rev. Plant Biol. 2006;57:303–333. doi: 10.1146/annurev.arplant.57.032905.105228. PubMed DOI
Warman P.R., Havard K.A. Yield, vitamin and mineral contents of organically and conventionally grown carrots and cabbage. Agric. Ecosyst. Environ. 1997;61:155–162. doi: 10.1016/S0167-8809(96)01110-3. DOI
Fjelkner-Modig S., Bengtsson H., Nyström S., Stegmark R. The influence of organic and integrated production on nutritional, sensory and agricultural aspects of vegetable raw materials for food production. Acta Agric. Scand. Sect. B Plant Soil Sci. 2010;50:102–113. doi: 10.1080/090647100750374250. DOI
Kapusta-Duch J., Leszczynska T. Comparison of vitamin C and ß-carotene in cruciferous vegetables grown in diversified ecological conditions. Pol. J. Environ. Stud. 2013;22:167–173.
Park S., Arasu M.V., Lee M.-K., Chun J.-H., Seo J.M., Lee S.-W., Al-Dhabi N.A., Kim S.-J. Quiantification of glucosinolates, anthocyanins, free amino acids, and vitamin C in inbred lines of cabbage (Brassica oleracea L.) Food Chem. 2014;145:77–85. doi: 10.1016/j.foodchem.2013.08.010. PubMed DOI
Fernandez-Leon A.M., Lozano M., Gonzalez D., Ayuso M.C., Fernandez-Leon M.F. Bioactive compounds content and total antioxidant activity of two Savoy cabbages. Czech J. Food Sci. 2014;32:549–554. doi: 10.17221/76/2014-CJFS. DOI
Brotman Y., Landau U., Cuadros-Inostroza A., Takayuki K., Fernie A.R., Chet I., Viterbo A., Willmitzer L. Trichoderma-plant root colonization: Escaping early plant defense responses and activation of the antioxidant machinery for saline stress tolerance. PLoS Pathog. 2013;9:e1003221. doi: 10.1371/annotation/8b818c15-3fe0-4e56-9be2-e44fd1ed3fae. PubMed DOI PMC
Mastouri F., Bjorkman T., Harman G.E. Trichoderma harzianum enhances antioxidant defense of tomato seedlings and resistence to water deficit. Mol. Plant-Microbe Interact. 2012;25:1264–1271. doi: 10.1094/MPMI-09-11-0240. PubMed DOI
Abdel-Farid I.B., Jahangir M., Mustafa N.R., Van Dam N.M., Van den Hondel C.A., Kim H.K., Choi Y.H., Verpoorte R. Glucosinolate profiling of Brassica rapa cultivars after infection by Leptosphaeria maculans and Fusarium oxysporum. Biochem. Syst. Ecol. 2010;38:612–620. doi: 10.1016/j.bse.2010.07.008. DOI
Kabouw P., Biere A., Van Der Putten W.H., Van Dam N.M. Intra-specific differences in root and shoot gluosinolate profiles among white cabbage (Brassica oleracea var. capitata) cultivars. J. Agric. Food Chem. 2010;58:411–417. doi: 10.1021/jf902835k. PubMed DOI
Vicas S.I., Teusdea A.C., Carbunar M., Socaci S.A., Socaciu C. Glucosinolates profile and antioxidant capacity of Romanian Brassica vegetables obtained by organic and conventional agricultural practices. Plant Food Hum. Nutr. 2013;68:313–321. doi: 10.1007/s11130-013-0367-8. PubMed DOI
Kusznierewicz B., Bartoszek A., Wolska L., Drzewiecki J., Gormstern S., Namiesnik J. Partial characterization of white cabbages (Brassica oleracea var. capitata f. alba) from different regions by glucosinolates, bioactive compounds, total antioxidant activities and proteins. LWT-Food Sci. Technol. 2008;41:1–9. doi: 10.1016/j.lwt.2007.02.007. DOI
Charron C.S., Saxton A.M., Sams C.E. Relationship of climate and genotype to seasonal variation in the glucosinolate-myrosinase system. I. Glucosinolate content in ten cultivars of Brassica oleracea grown in fall and spring seasons. J. Sci. Food Agric. 2005;85:671–681. doi: 10.1002/jsfa.1880. DOI
Wennberg M., Ekvall J., Olsson K., Nyman M. Changes in carbohydrate and glucosinolate composition in white cabbage (Brassica oleracea var. capitata) during blanching and treatment with acetic acid. Food Chem. 2006;95:226–236. doi: 10.1016/j.foodchem.2004.11.057. DOI
Menard R., Larue J.P., Siluq D., Thouvenot D. Glucosinolates in cauliflower as biochemical markers for resistence against downy mildew. Phytochemistry. 1999;52:29–35. doi: 10.1016/S0031-9422(99)00165-X. DOI
Buxdorf K., Yaffe H., Barda O., Levy M. The effects of glucosinolates and their breakdown products on necrotrophic fungi. PLoS ONE. 2013;8:e70771. doi: 10.1371/journal.pone.0070771. PubMed DOI PMC
Aghajanzadehdivaei T. Ph.D. Thesis. University of Groningen; Groningen, The Netherlands: 2015; doi:10.1371/journal.pone.0070771. Sulfur Metabolism, Glucosinolates and Fungal Resistence in Brassica.
Fahey J., Zalcmann A., Talalay P. The chemical diversity and distribution of glucosinolates and isothiocyanates among plants. Phytochemistry. 2001;56:5–51. doi: 10.1016/S0031-9422(00)00316-2. PubMed DOI
Wagner A.E., Rimbach G. Ascorbigen: Chemistry, occurrence, and biologic properties. Clin. Dermatol. 2009;27:217–224. doi: 10.1016/j.clindermatol.2008.01.012. PubMed DOI
Ishida M., Hara M., Fukino N., Kakizaki T.M.Y. Glucosinolate metabolism, functionality and breeding for the improvement of Brassicaceae vegetables. Breed. Sci. 2014;64:48–59. doi: 10.1270/jsbbs.64.48. PubMed DOI PMC
Šamec D., Pavlovič I., Salopek-Sondi B. White cabbage (Brassica oleracea var. capitata f. alba): Botanical, phytochemical and pharmacological overview. Phytochem. Rev. 2017;16:117–135. doi: 10.1007/s11101-016-9454-4. DOI
Hrncirik K., Valusek J., Velisek J. Investigation of ascorbigen as a breakdown product of glucobrassicin autolysis in Brassica vegetables. Eur. Food Res. Technol. 2001;212:576–581. doi: 10.1007/s002170100291. DOI
Kim G., Fujita T., Stankovic K.M., Welling D.B., Moon I.S., Choi J.Y., Yun J., Kang J.S., Lee J.D. Sulforaphane, a natural component of broccoli, inhibits vestibular schwannoma growth in vitro and in vivo. Sci. Rep. 2016;6:36215. doi: 10.1038/srep36215. PubMed DOI PMC
Boote K.J., Jones J.W., Mishoe J.W., Berger R.D. Coupling pests to crop growth simulators to predict yield reductions. Phytopathology. 1983;73:1581–1587. doi: 10.1094/Phyto-73-1581. DOI
Lundrgardh B., Botek P., Schulzova V., Hajslova J., Stromberg A., Andersson C. Impact of different green manures on the content of S-alk(en)yl-l-cysteine sulfoxides and L-ascorbic acid in leek (Allium porrum) J. Agric. Food Chem. 2008;56:2102–2111. doi: 10.1021/jf071710s. PubMed DOI
Strandberg J.O. Spore production and dispersal of Alternaria dauci. Phytopathology. 1977;67:1262–1266. doi: 10.1094/Phyto-67-1262. DOI
Shahin E.A., Shepard J.F. An efficient technique for inducing profuse sporulation of Alternaria species. Phytopathology. 1979;69:618–620. doi: 10.1094/Phyto-69-618. DOI