The learning curve associated with the implantation of the Nanostim leadless pacemaker

. 2018 Nov ; 53 (2) : 239-247. [epub] 20180813

Jazyk angličtina Země Nizozemsko Médium print-electronic

Typ dokumentu srovnávací studie, časopisecké články, multicentrická studie, pozorovací studie

Perzistentní odkaz   https://www.medvik.cz/link/pmid30105428
Odkazy

PubMed 30105428
PubMed Central PMC6182715
DOI 10.1007/s10840-018-0438-8
PII: 10.1007/s10840-018-0438-8
Knihovny.cz E-zdroje

PURPOSE: Use of novel medical technologies, such as leadless pacemaker (LP) therapy, may be subjected to a learning curve effect. The objective of the current study was to assess the impact of operators' experience on the occurrence of serious adverse device effects (SADE) and procedural efficiency. METHODS: Patients implanted with a Nanostim LP (Abbott, USA) within two prospective studies (i.e., LEADLESS ll IDE and Leadless Observational Study) were assessed. Patients were categorized into quartiles based on operator experience. Learning curve analysis included the comparison of SADE rates at 30 days post-implant per quartile and between patients in quartile 4 (> 10 implants) and patients in quartiles 1 through 3 (1-10 implants). Procedural efficiency was assessed based on procedure duration and repositioning attempts. RESULTS: Nanostim LP implant was performed in 1439 patients by 171 implanters at 60 centers in 10 countries. A total of 91 (6.4%) patients experienced a SADE in the first 30 days. SADE rates dropped from 7.4 to 4.5% (p = 0.038) after more than 10 implants per operator. Total procedure duration decreased from 30.9 ± 19.1 min in quartile 1 to 21.6 ± 13.2 min (p < 0.001) in quartile 4. The need for multiple repositionings during the LP procedure reduced in quartile 4 (14.8%), compared to quartiles 1 (26.8%; p < 0.001), 2 (26.6%; p < 0.001), and 3 (20.4%; p = 0.03). CONCLUSIONS: Learning curves exist for Nanostim LP implantation. Procedure efficiency improved with increased operator experience, according to a decrease in the incidence of SADE, procedure duration, and repositioning attempts.

Zobrazit více v PubMed

Reddy VY, Exner DV, Cantillon DJ, Doshi R, Bunch TJ, Tomassoni GF, Friedman PA, Estes NA, 3rd, Ip J, Niazi I, Plunkitt K, Banker R, Porterfield J, Ip JE, Dukkipati SR, LEADLESS II Study Investigators Percutaneous implantation of an entirely intracardiac leadless pacemaker. N Engl J Med. 2015;373:1125–1135. doi: 10.1056/NEJMoa1507192. PubMed DOI

Tjong FV, Reddy VY. Permanent leadless cardiac pacemaker therapy: a comprehensive review. Circulation. 2017;135(15):1458–1470. doi: 10.1161/CIRCULATIONAHA.116.025037. PubMed DOI

León AR, Abraham WT, Curtis AB, Daubert JP, Fisher WG, Gurley J, Hayes DL, Lieberman R, Petersen-Stejskal S, Wheelan K; MIRACLE Study Program. Safety of transvenous cardiac resynchronization system implantation in patients with chronic heart failure: combined results of over 2,000 patients from a multicenter study program. J Am Coll Cardiol. 2005;46:2348–2356. PubMed

Knops RE, Brouwer TF, Barr CS, Theuns DA, Boersma L, Weiss R, Neuzil P, Scholten M, Lambiase PD, Leon AR, Hood M, Jones PW, Wold N, Grace AA, Olde Nordkamp LR, Burke MC. IDE and EFFORTLESS investigators. The learning curve associated with the introduction of the subcutaneous implantable defibrillator. Europace. 2015;18:1010–1015. doi: 10.1093/europace/euv299. PubMed DOI PMC

Minha S, Waksman R, Satler LP, Torguson R, Alli O, Rihal CS, Mack M, Svensson LG, Rajeswaran J, Blackstone EH, Tuzcu EM, Thourani VH, Makkar R, Ehrlinger J, Lowry AM, Suri RM, Greason KL, Leon MB, Holmes DR, Pichard AD. Learning curves for transfemoral transcatheter aortic valve replacement in the PARTNER-I trial: success and safety. Catheter Cardiovasc Interv. 2016;87:165–175. doi: 10.1002/ccd.26121. PubMed DOI

Alli O, Rihal CS, Suri RM, Greason KL, Waksman R, Minha S, Torguson R, Pichard AD, Mack M, Svensson LG, Rajeswaran J, Lowry AM, Ehrlinger J, Tuzcu EM, Thourani VH, Makkar R, Blackstone EH, Leon MB, Holmes D. Learning curves for transfemoral transcatheter aortic valve replacement in the PARTNER-I trial: technical performance. Catheter Cardiovasc Interv. 2016;87:154–162. doi: 10.1002/ccd.26120. PubMed DOI

Reddy VY, Knops RE, Sperzel J, Miller MA, Petru J, Simon J, Sediva L, de Groot JR, Tjong FV, Jacobson P, Ostrosff A, Dukkipati SR, Koruth JS, Wilde AA, Kautzner J, Neuzil P. Permanent leadless cardiac pacing: results of the LEADLESS trial. Circulation. 2014;129(14):1466–1471. doi: 10.1161/CIRCULATIONAHA.113.006987. PubMed DOI

El-Chami M, Kowal RC, Soejima K, Ritter P, Duray GZ, Neuzil P, Mont L, Kypta A, Sagi V, Hudnall JH, Stromberg K, Reynolds D. Impact of operator experience and training strategy on procedural outcomes with leadless pacing: insights from the Micra Transcatheter Pacing Study. Pacing Clin Electrophysiol. 2017;40:834–842. doi: 10.1111/pace.13094. PubMed DOI

St. Jude Medical. NanostimTM Leadless Pacemaker System. Executive summary for the circulatory system devices panel of the Medical Devices Advisory Committee. Version: 01/20/2016.

Micra Transcatheter Pacing System (TPS). FDA panel pack for circulatory systems devices panel,February 2016

Reynolds D, Duray GZ, Omar R, Soejima K, Neuzil P, Zhang S, Narasimhan C, Steinwender C, Brugada J, Lloyd M, Roberts PR, Sagi V, Hummel J, Bongiorni MG, Knops RE, Ellis CR, Gornick CC, Bernabei MA, Laager V, Stromberg K, Williams ER, Hudnall JH, Ritter P; Micra Transcatheter Pacing Study Group. A leadless intracardiac transcatheter pacing system. N Engl J Med 2016 Feb 11;374(6):533–541. PubMed

Mahapatra S, Bybee KA, Bunch TJ, Espinosa RE, Sinak LJ, McGoon MD, Hayes DL. Incidence and predictors of cardiac perforation after permanent pacemaker placement. Heart Rhythm. 2005;2:907–911. doi: 10.1016/j.hrthm.2005.06.011. PubMed DOI

Kirkfeldt R, Johansen JB, Nielsen JC. Conventional VVI pacing in Denmark. A benchmark for leadless pacing. EP Europace, Volume 18, Issue suppl_1, 1 June 2016, Pages i170.

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...