• This record comes from PubMed

Taxonomy of Aspergillus section Flavi and their production of aflatoxins, ochratoxins and other mycotoxins

. 2019 Jun ; 93 () : 1-63. [epub] 20180731

Status PubMed-not-MEDLINE Language English Country Netherlands Media print-electronic

Document type Journal Article

Links

PubMed 30108412
PubMed Central PMC6080641
DOI 10.1016/j.simyco.2018.06.001
PII: S0166-0616(18)30028-9
Knihovny.cz E-resources

Aflatoxins and ochratoxins are among the most important mycotoxins of all and producers of both types of mycotoxins are present in Aspergillus section Flavi, albeit never in the same species. Some of the most efficient producers of aflatoxins and ochratoxins have not been described yet. Using a polyphasic approach combining phenotype, physiology, sequence and extrolite data, we describe here eight new species in section Flavi. Phylogenetically, section Flavi is split in eight clades and the section currently contains 33 species. Two species only produce aflatoxin B1 and B2 (A. pseudotamarii and A. togoensis), and 14 species are able to produce aflatoxin B1, B2, G1 and G2: three newly described species A. aflatoxiformans, A. austwickii and A. cerealis in addition to A. arachidicola, A. minisclerotigenes, A. mottae, A. luteovirescens (formerly A. bombycis), A. nomius, A. novoparasiticus, A. parasiticus, A. pseudocaelatus, A. pseudonomius, A. sergii and A. transmontanensis. It is generally accepted that A. flavus is unable to produce type G aflatoxins, but here we report on Korean strains that also produce aflatoxin G1 and G2. One strain of A. bertholletius can produce the immediate aflatoxin precursor 3-O-methylsterigmatocystin, and one strain of Aspergillus sojae and two strains of Aspergillus alliaceus produced versicolorins. Strains of the domesticated forms of A. flavus and A. parasiticus, A. oryzae and A. sojae, respectively, lost their ability to produce aflatoxins, and from the remaining phylogenetically closely related species (belonging to the A. flavus-, A. tamarii-, A. bertholletius- and A. nomius-clades), only A. caelatus, A. subflavus and A. tamarii are unable to produce aflatoxins. With exception of A. togoensis in the A. coremiiformis-clade, all species in the phylogenetically more distant clades (A. alliaceus-, A. coremiiformis-, A. leporis- and A. avenaceus-clade) are unable to produce aflatoxins. Three out of the four species in the A. alliaceus-clade can produce the mycotoxin ochratoxin A: A. alliaceus s. str. and two new species described here as A. neoalliaceus and A. vandermerwei. Eight species produced the mycotoxin tenuazonic acid: A. bertholletius, A. caelatus, A. luteovirescens, A. nomius, A. pseudocaelatus, A. pseudonomius, A. pseudotamarii and A. tamarii while the related mycotoxin cyclopiazonic acid was produced by 13 species: A. aflatoxiformans, A. austwickii, A. bertholletius, A. cerealis, A. flavus, A. minisclerotigenes, A. mottae, A. oryzae, A. pipericola, A. pseudocaelatus, A. pseudotamarii, A. sergii and A. tamarii. Furthermore, A. hancockii produced speradine A, a compound related to cyclopiazonic acid. Selected A. aflatoxiformans, A. austwickii, A. cerealis, A. flavus, A. minisclerotigenes, A. pipericola and A. sergii strains produced small sclerotia containing the mycotoxin aflatrem. Kojic acid has been found in all species in section Flavi, except A. avenaceus and A. coremiiformis. Only six species in the section did not produce any known mycotoxins: A. aspearensis, A. coremiiformis, A. lanosus, A. leporis, A. sojae and A. subflavus. An overview of other small molecule extrolites produced in Aspergillus section Flavi is given.

See more in PubMed

Adler M., Wintersteiner O. A reinvestigation of flavacidin, the penicillin produced by Aspergillus flavus. Journal of Biological Chemistry. 1948;176:873–891. PubMed

Amaike S., Keller N.P. Aspergillus flavus. Annual Review of Phytopathology. 2011;49:107–133. PubMed

Amare M.G., Keller N.P. Molecular mechanisms of Aspergillus flavus secondary metabolism and development. Fungal Genetics and Biology. 2014;66:11–18. PubMed

Ammar H.A.M., Srour A.Y., Ezzat S.M. Identification and characterization of genes involved in kojic acid biosynthesis in Aspergillus flavus. Annals of Microbiology. 2017;67:691–702.

Arnstein H.R.V., Cook A.H. The penicillin produced by Aspergillus parasiticus. British Journal of Experimental Pathology. 1947;28:94–98. PubMed PMC

Arone L., Augusto J., Bandyopahyay R. Diversity of Aspergillus section Flavi S morphotype in Mozambique. Phytopathology. 2016;106:24.

Arroya-Manzanares N., Di Mavungu D., Uka V. Use of UHPLC high resolution Orbitrap mass spectrometry to investigate the genes involved in the production of secondary metabolites in Aspergillus flavus. Food Additives and Contaminants. Part A – Chemistry Analysis Control Exposure & Risk Assessment. 2015;32:1656–1673. PubMed

Arzanlou M., Samadi R., Frisvad J.C. Two novel Aspergillus species from hypersaline soils of The National Park of Lake Urmia, Iran. Mycological Progress. 2016;15:1081–1092.

Asai Y., Nonaka N., Nishio M. TMC-2A, -2B, and -2C, new dipeptidyl peptidase inhibitors produced by Aspergillus oryzae A374. II. Isolation and structure determination. Journal of Antibiotics. 1998;50:653–658. PubMed

Assante G., Camarda L., Locci R. Isolation and structure of red pigments from Aspergillus flavus and related species, grown on a differential medium. Journal of Agricultural and Food Chemistry. 1981;29:785–787.

Atlas R.M. CRC Press; Boca Raton: 2010. Handbook of Microbiological Media.

Baker J.L., Bayman P., Mahoney N.E. Proceedings of the 3rd Fungal Genomics, 4th fumonisin, and 16th aflatoxin elimination workshop, Savannah, Georgia. 2003. Ochratoxigenic Aspergillus lanosus and A. alliaceus from California tree nut orchards.

Barayani N., Despot D.J., Palagyi A. Identification of Aspergillus species in central Europe able to produce G-type aflatoxins. Acta Biologica Hungarica. 2015;66:339–347. PubMed

Barbier M., Vetter W., Bogdanov D. Synthese und Eigenschaften eines Analogen des Lycomarasmins und der Aspergillomarasmine. Annalen der Chemie-Justus Liebig. 1963;668:132.

Bartoli A., Maggi O. 4 new species of Aspergillus from Ivory Coast. Transactions of the British Mycological Society. 1978;71:383–394.

Basaran P., Demirbas R.M. Spectroscopic detection of pharmaceutical compounds from an aflatoxigenic strain of Aspergillus parasiticus. Microbiological Research. 2010;165:516–522. PubMed

Bayman P., Baker J.L., Doster M.A. Ochratoxin A production by the Aspergillus ochraceus group and Aspergillus alliaceus. Applied and Environmental Microbiology. 2002;68:2326–2329. PubMed PMC

Becker G.E., Schmidt E.L. β-nitropropionic acid and nitrite in relation to nitrate formation by Aspergillus flavus. Archives of Microbiology. 1964;49:167–175. PubMed

Berg D.H., Massing R.P., Hoehn M.M. A30641, a new epidithiodiketopiperazine with antifungal activity. Journal of Antibiotics. 1976;29:394–397. PubMed

Besegmez H.I.O., Heperkan D. Aflatoxin, cyclopiazonic acid and beta-nitropropionic acid production by Aspergillus section Flavi from dried figs grown in Turkey. Quality Assurance and Safety of Crops and Foods. 2015;7:477–485.

Birch A.J., Qureshi A.A., Rickards R.W. Metabolites of Aspergillus indicus: The structure and some aspects of the biosynthesis of dihydrocanadensolide. Australian Journal of Chemistry. 1968;21:2775–2784.

Birkinshaw J.H., Charles J.H.V., Lilly C.H. The biochemistry of microorganisms. VII. Kojic acid (5-hydroxy-m-methylpyrone) Philosophical Transactions of the Royal Society, London. 1931;B220:127–138.

Blinc M., Johanides V. Antibiotics from aspergilli with special regard to species isolated in Yugoslavia. Bulletin Science, Conseil Academie RPF Yugoslavie. 1956;2:99.

Bradshaw B., Etxebarria-Jardí G., Bonjoch J. Total synthesis of (-)anominine. Journal of the American Chemical Society. 2010;132:5966–5967. PubMed

Brookes D., Tidd B.K., Turner W.B. Avenaciolide, an antifungal lactone from Aspergillus avenaceus. Journal of the Chemical Society. 1963;1963:5385–5391.

Brown D.W., Hauser F.M., Tommasi R. Structural elucidation of a conidial pigment from Aspergillus parasiticus. Tetrahedron Letters. 2003;34:419–422.

Buchanan R.L., Ayres J.C. Effect of sodium acetate on growth and aflatoxin production by Aspergillus parasiticus NRRL 2999. Journal of Food Science. 1976;41:128–132.

Büchi G., Francisco M.A., Murray W.V. Aspersitin – a new metabolite of Aspergillus parasiticus. Tetrahedron Letters. 1983;24:2527–2530.

Bush M., Goth A. Flavicin: an antibacterial substance produced by Aspergillus flavus. Journal of Pharmacology and Experimental Therapy. 1943;78:164–169.

Bush M., Goth A., Dickison H.L. Flavicin II: An antibacterial substance produced by an Aspergillus flavus. Journal of Pharmacology and Experimental Therapy. 1945;84:262–277.

Bush M., Touster O., Brockman E. The production of β-nitropropionic acid by a strain of Aspergillus flavus. Journal of Biological Chemistry. 1951;188:685–693. PubMed

Calderari T.O., Iamanaka B.T., Frisvad J.C. The biodiversity of Aspergillus section Flavi in brazil nuts: from rainforest to producer. International Journal of Food Microbiology. 2013;160:267–272. PubMed

Camiletti B.X., Torrico A.K., Fernando Maurino M. Fungal screening and aflatoxin production by Aspergillus section Flavi isolated from pre-harvest maize ears grown in two Argentinean regions. Crop Protection. 2017;92:41–48.

Cardwell K.F., Cotty P.J. Distribution of Aspergillus section Flavi among soils from the four agricultural zones of the republic of Bénin, West Africa. Plant Disease. 2002;86:434–439. PubMed

Carvajal-Campos A., Manizan A.L., Tadriest S. Aspergillus korhogoensis, a novel aflatoxin producing species from Côte d’Ivoire. Toxins. 2017;9:353. PubMed PMC

Cary J.W., Harris-Coward P.Y., Ehrlich K.C. Functional characterization of a veA-dependant polyketide synthase gene in Aspergillus flavus necessary for the synthesis of asparasone, a sclerotium-specific pigment. Fungal Genetics and Biology. 2014;64:25–35. PubMed

Cary J.W., Uka V., Han Z. An Aspergillus flavus secondary metabolite gene cluster containing a hybrid PKS-NRPS is necessary for synthesis of the 2-pyridones, leporins. Fungal Genetics and Biolology. 2015;81:88–97. PubMed

Cary J.W., Han Z., Yin Y. Transcriptome analysis of Aspergillus flavus reveals veA-dependent regulation of secondary metabolite gene clusters, including the novel aflavarin cluster. Eukaryotic Cell. 2015;14:983–997. PubMed PMC

Cary J.W., Harris-Coward P., Scharfenstein L. The Aspergillus flavus homeobox gene, hbx1, is required for development and aflatoxin production. Toxins. 2017;9:315. PubMed PMC

Chalivandra S.C., DeRobertis C., Chang P.-K. Cyclopiazonic acid is a pathogenicity factor for Aspergillus flavus and a promising target for screening germplasm for ear rot resistance. Molecular Plant-Microbe Interactions. 2017;30:361–373. PubMed

Champhamjon P., Boettger-Schmidt D., Scherlach K. Biosynthesis of the halogenated mycotoxin aspirochlorine in koji mold involves cryptic amino acid conversion. Angewandte Chemie International Edition. 2014;53:13409–13413. PubMed

Chang P.-K., Ehrlich K.C. Cyclopiazonic acid biosynthesis by Aspergillus flavus. Toxin Reviews. 2011;30:79–89.

Chang P.-K., Horn B.W., Dorner J.W. Clustered genes involved in cyclopiazonic acid production are next to the aflatoxin biosynthetic gene cluster in Aspergillus flavus. Fungal Genetics and Biology. 2009;46:176–182. PubMed

Chang P.-K., Scharfenstein L.L., Li R.W. Aspergillus flavus aswA, a gene homolog of Asperguillus nidulans oefC, regulates sclerotial development and biosynthesis of sclerotium-associated secondary metabolites. Fungal Genetics and Biology. 2017;104:29–37. PubMed

Christensen C.M., Nelson G.H., Speers G.M. Results of feeding tests with rations containing grain invaded by a mixture of naturally present fungi plus Aspergillus flavus NRRL 2999. Minnesota research suggests that danger of toxicity from material invaded by a mixture of fungi probably is not very great. Feedstuffs. 1973;45:20–41.

Christensen M. A synoptic key and evaluation of species in the Aspergillus flavus group. Mycologia. 1981;73:1056–1084.

Ciegler A. Bioproduction of ochratoxin A and penicillic acid by members of the Aspergillus ochraceus group. Canadian Journal of Microbiology. 1972;18:631–636. PubMed

Codner R.C., Sargeant K., Yeo R. Production of aflatoxin by the culture of strains of Aspergillus flavus-oryzae on sterilized peanuts. Biotechnology and Bioengineering. 1963;5:185–192.

Cole R.J., Dorner J.W., Springer J.P. Indole metabolites from a strain of Aspergillus flavus. Journal of Agricultural and Food Chemistry. 1981;29:293–295.

Copetti M.V., Iamanaka B.T., Pereira J.L. Aflatoxigenic fungi and aflatoxins in cocoa. International Journal of Food Microbiology. 2011;148:141–144. PubMed

Cotty P.J. Virulence and cultural characteristics of two Aspergillus flavus strains pathogenic on cotton. Phytopathology. 1989;79:808–814.

Cotty P.J. Influence of field application of an atoxigenic strain of Aspergillus flavus on the populations of A. flavus infecting cotton balls and on the aflatoxin content of cottonseed. Phytopathology. 1994;84:1270–1277.

Cotty P.J., Cardwell K.F. Divergence of West African and north American communities of Aspergillus section Flavi. Applied and Environmental Microbiology. 1999;65:2264–2266. PubMed PMC

Danmek K., Prasongsuk S., Lotrakul P. Effect of Avid (R) on the synnema-like formation of Aspergillus flavus grown on Czapek medium. African Journal of Microbiology Research. 2014;5:2812–2815.

Donner M., Atenkeng J., Sikora R.A. Distribution of Aspergillus section Flavi in soils of maize fields in three agri–ecological zones of Nigeria. Soil Biology and Biochemistry. 2009;41:37–44.

Dorner J.W. Production of cyclopiazonic acid by Aspergillus tamarii Kita. Applied and Environmental Microbiology. 1983;46:1435–1437. PubMed PMC

Doster M., Michailides T., Morgan D. Aspergillus species and mycotoxins in figs from California orchards. Plant Disease. 1996;80:484–489.

Dowd P.F. Synergism of aflatoxin B1 toxicity with co-occurring fungal metabolite kojic acid to 2 caterpillars. Entomologia Experimentalis et Applicata. 1988;47:69–71.

Doxtater K.G., Alexander M. Role of 3-nitropropionic acid in nitrate formation by Aspergillus flavus. Journal of Bacteriology. 1966;91:186–191. PubMed PMC

Ehrlich K.C. Non-aflatoxigenic Aspergillus flavus to prevent aflatoxin contamination in crops: advantages and limitations. Frontiers in Microbiology. 2014;5 PubMed PMC

Ehrlich K.C., Mack B.M. Comparison of expression of secondary metabolite biosynthesis cluster genes in Aspergillus flavus, A. parasiticus, and A. oryzae. Toxins. 2014;6:1916–1928. PubMed PMC

Ehrlich K.C., Kobbeman K., Montalbo B.G. Aflatoxin-producing Aspergillus species from Thailand. International Journal of Food Microbiology. 2007;114:153–159. PubMed

Ezekiel C.N., Sulyok M., Babalola D.A. Incidence and consumer awareness of toxigenic Aspergillus section Flavi and aflatoxin B1 in peanut cake from Nigeria. Food Control. 2013;30:596–601.

Ezekiel C.N., Sulyok M., Frisvad J.C. Fungal and mycotoxin assessment of dried edible mushroom in Nigeria. International Journal of Food Microbiology. 2013;162:231–236. PubMed

Ezekiel C.N., Udom I.E., Frisvad J.C. Assessment of aflatoxigenic Aspergillus and other fungi in millet and sesame from Plateau State, Nigeria. Mycology. 2014;5:16–22. PubMed PMC

Faustinelli P.C., Palencia E.R., Sobole V.S. Study of the genetic diversity of the aflatoxin biosynthetic cluster in Aspergillus section Flavi using insertion/deletion markers in peanut seeds from Georgia, USA. Mycologia. 2017;109:200–209. PubMed

Faustinelli P.C., Wang X.M., Palencia E.R. Genome sequences of eight Aspergillus flavus spp. and one A. parasiticus sp., isolated from peanut seeds in Georgia. Genome Announcements. 2016;4:e00278–e00316. PubMed PMC

Fedorova N.D., Khaldi N., Joarder V.S. Genomic islands in the pathogenic filamentous fungus Aspergillus fumigatus. PLoS Genetics. 2008;4 PubMed PMC

Fennell D.I., Warcup J.H. The ascocarps of Aspergillus alliaceus. Mycologia. 1959;51:409–415.

Filtenborg O., Frisvad J.C., Svendsen J.A. Simple screening method for moulds producing intracellular mycotoxins in pure cultures. Applied and Environmental Microbiology. 1983;45:581–585. PubMed PMC

Freitas-Silva O., Vanañcio A. Brazil nuts: benefits and risks associated with contamination by fungi and mycotoxins. Food Research International. 2011;44:1434–1440.

Frisvad J.C. Media and growth conditions for induction of secondary metabolites. In: Keller N.P., Turner G., editors. Fungal secondary metabolism: methods and protocols. Vol. 944. Humana Press; New York: 2012. pp. 47–58. (Methods in Molecular Biology). PubMed

Frisvad J.C., Larsen T.O., de Vries R. Secondary metabolite profiling, growth profiles and other tools for species recognition and important Aspergillus mycotoxins. Studies in Mycology. 2007;59:31–37. PubMed PMC

Frisvad J.C., Samson R.A. Neopetromyces gen. nov. and an overview of teleomorphs of Aspergillus subgenus Circumdati. Studies in Mycology. 2000;45:201–207.

Frisvad J.C., Skouboe P., Samson R.A. Taxonomic comparison of three different groups of aflatoxin producers and a new efficient producer of aflatoxin B1, sterigmatocystin and 3-O-methylsterigmatocystin, Aspergillus rambellii sp. nov. Systematic and Applied Microbiology. 2005;28:442–453. PubMed

Frisvad J.C., Thrane U. Standardized High-Performance Liquid Chromatography of 182 mycotoxins and other fungal metabolites based on alkylphenone indices and UV-VIS spectra (diode-array detection) Journal of Chromatography. 1987;404:195–214. PubMed

Galagan J.E., Calvo S.E., Cuomo C. Sequencing of Aspergillus nidulans and comparative analysis with A. fumigatus and A. oryzae. Nature. 2005;438:1105–1115. PubMed

Gallagher R.T., Wilson B.J. Aflatrem, the tremorgenic mycotoxin from Aspergillus flavus. Mycopathologia. 1978;66:183–185. PubMed

Garrett S.D. 2nd edn. Pergamon Press; Oxford: 1981. Soil fungi and soil fertility: an introduction to soil mycology.

Geiser D.M., Dorner J.W., Horn B.W. The phylogenetics of mycotoxin and sclerotium production in Aspergillus flavus and Aspergillus oryzae. Fungal Genetics and Biology. 2000;31:169–179. PubMed

Geiser D.M., Klich M.A., Frisvad J.C. The current status of species recognition and identification in Aspergillus. Studies in Mycology. 2007;59:1–10. PubMed PMC

Geogianna D.R., Fedorova F.D., Burroughs J.L. Beyond aflatoxin: four distrinct expression patterns and functional roles associated with Aspergillus flavus secondary metabolism gene clusters. Molecular Plant Pathology. 2010;11:213–226. PubMed PMC

Gibbons J.G., Rinker D.C. The genomics of microbial domestication in the fermented food environment. Current Opinion in Genetcis & Development. 2015;35:1–8. PubMed PMC

Gibbons J.G., Salichos L., Slot J.C. The evolutionary imprint of domestication on genome variation and function of the filamentous fungus Aspergillus oryzae. Current Biology. 2012;22:1403–1409. PubMed PMC

Gilbert M.K., Mack B.M., Wei Q.-J. RNA sequencing of an nsdC mutant reveals global regulation of secondary metabolite gene clusters in Aspergillus flavus. Microbiological Research. 2016;182:150–161. PubMed

Glass N.L., Donaldson G.C. Development of primer sets for use with the PCR to amplify conserved genes from filamentous ascomycetes. Applied and Environmental Microbiology. 1995;61:1323–1330. PubMed PMC

Gloer J.B., Rinderknecht B.L., Wicklow D.T. Nominine: a new insecticidal indole diterpene from the sclerotia of Aspergillus nomius. Journal of Organic Chemistry. 1989;54:2530–2532.

Gloer J.B., Tepaske M.R., Sima J.S. Antiinsectan aflavinine derivatives from the sclerotia of Aspergillus flavus. Journal of Organic Chemistry. 1988;53:5457–5460.

Godet M., Munaut F. Molecular strategy for identification in Aspergillus section Flavi. FEMS Microbiology Letters. 2010;304:157–168. PubMed

Gonçalves J.S., Ferracin L.M., Viera M.L.C. Molecular analysis of Aspergillus section Flavi isolated from Brazil nuts. World Journal of Microbiology & Biotechnology. 2012;28:1817–1825. PubMed

Gonçalves S., Stchigel A.M., Cano J.P. Aspergillus novoparasiticus: a new clinical species of the section Flavi. Medical Mycology. 2012;50:152–160. PubMed

Guezlane-Tebibel N., Bouras N., Mokane S. Aflatoxigenic strains of Aspergillus section Flavi isolated from marketed peanuts (Arachis hypogea) in Algiers (Algeria) Annals of Microbiology. 2013;63:295–305.

Guida V.O. Activitades antibioticas do Aspergillus flavus. Sobre diversas bacterias. Bolletin Societa Paulista Medicale Veterinaria (Sao Paulo) 1948;8:70–73.

Haenni A.L., Robert M., Vetter W. Structure chemique des aspergillomarasmines A and B. Helvetica Chimica Acta. 1965;48:729–750. PubMed

Hajjaji A., El Otamani M., Bouya D. Occurrence of mycotoxins (ochratoxin A and deoxynivalenol) and toxigenic fungi in Moroccan wheat grains: impact of ecological factors on the growth and ochratoxin A production. Molecular Nutrition and Food Research. 2006;50:494–499. PubMed

Hamasaki T., Kuwano H., Isono K. New metabolite, parasiticolide A, from Aspergillus parasiticus. Agricultural and Biological Chemistry. 1975;39:749–751.

Hatcher H.J., Schmidt E.L. Nitrification of aspartate by Aspergillus flavus. Applied Microbiology. 1971;21:181–186. PubMed PMC

Hedayati M.T., Paqualotto A.C., Warn P.A. Aspergillus flavus: human pathogen, allergen and mycotoxin producer. Microbiology-SGM. 2007;153:1677–1697. PubMed

Hesseltine C.W., Shotwell O.L., Smith M. Production of various aflatoxins by strains of the Aspergillus flavus series. In: Herzberg M., editor. Proceedings of the first joint U.S. – Japan conference on toxic micro-organisms. Mycotoxins. Botulism. UJNR Joint Panels on Toxic Micro-organisms and the U.S. Department of the Interior; Washington D.C., USA: 1970. pp. 202–210.

Hong S.B., Go S.J., Shin H.D., Frisvad J.C., Samson R.A. Polyphasic taxonomy of Aspergillus fumigatus and related species. Mycologia. 2005;97:1316–1329. PubMed

de Hoog G.S., Gerrits van den Ende A.H.G. Molecular diagnostics of clinical strains of filamentous Basidiomycetes. Mycoses. 1998;41:183–189. PubMed

Horn B.W. Aspergillus caelatus, a new species in section Flavi. Mycotaxon. 1997;61:185–191.

Horn B.W., Moore G.G., Carbone I. Sexual reproduction in Aspergillus flavus. Mycologia. 2009;101:423–429. PubMed

Horn B.W., Ramirez-Prado J.H., Carbone I. The sexual state of Aspergillus parasiticus. Mycologia. 2009;101:275–280. PubMed

Horn B.W., Moore G.G., Carbone I. Sexual reproduction in aflatoxin-producing Aspergillus nomius. Mycologia. 2009;103:174–183. PubMed

Horn B.W., Gell R.M., Singh K. Sexual reproduction in Aspergillus flavus sclerotia: Acquisition of novel alleles from soil populations and uniparental mitochrondrial inheritance. PLoS One. 2016;11 PubMed PMC

Houbraken J., Spierenburg H., Frisvad J.C. Rasamsonia, a new genus comprising thermotolerant and thermophilic Talaromyces and Geosmithia species. Antonie van Leeuwenhoek. 2012;101:403–421. PubMed PMC

Houbraken J., de Vries R.P., Samson R.A. Modern taxonomy of biotechnologically important Aspergillus and Penicillium species. Advances in Applied Microbiology. 2014;86:199–249. PubMed

Hu X., Xia Q.-W., Zhaom Y.-Y. Speradine B-E, four novel tetracyclic oxindole alkaloids from the marine-derived fungus Aspergillus oryzae. Heterocycles. 2014;89:1662–1669. PubMed

Hu X., Xia Q.-W., Zhao Y.-Y. Speradines F-H, three new oxindole alkaloids from the marine-derived fungus Aspergillus oryzae. Chemical and Pharmaceutical Bulletin. 2014;62:942–946. PubMed

Hubka V., Kolařík M. β-tubulin paralogue tubC is frequently misidentified as the benA gene in Aspergillus section Nigri taxonomy: primer specificity testing and taxonomic consequences. Persoonia. 2012;29:1–10. PubMed PMC

Hubka V., Lyskova P., Frisvad J.C. Aspergillus pragensis sp. nov. discovered during molecular re-identification of clinical isolates belonging to Aspergillus section Candidi. Medical Mycology. 2014;52:565–576. PubMed

Hubka V., Novakova A., Kolarik M. Revision of Aspergillus section Flavipedes: seven new species and proposal of section Jani section nov. Mycologia. 2015;107:169–208. PubMed

Hubka V., Nováková A., Peterson S.W. A reappraisal of Aspergillus section Nidulantes with descriptions of two new sterigmatocystin producing species. Plants Systematics and Evolution. 2016;302:1267–1299.

Hunter A.J., Jin B., Kelly J.M. Independent duplication of alpha-amylase in different strains of Aspergillus oryzae. Fungal Genetics and Biology. 2011;48:438–444. PubMed

Ibarra B.A., Lohmar J.M., Satterlee T. The 14-3-3 protein homolog ArtA regulates developent and secondary metabolism in the opportunistic plant pathogen Aspergillus flavus. Applied and Environmental Microbiology. 2018;84:e02241–e02317. PubMed PMC

Iizuka H., Iida M. Maltoryzine, a new toxic metabolite produced by a strain of Aspergillus oryzae var. microsporus isolated from poisonous malt sprout. Nature. 1962;196:681–682. PubMed

Inglis D.O., Binklet J., Skrzypek M.S. Comprehensive annotation of secondary metabolite biosynthetic genes and gene clusters of Aspergillus nidulans, A. fumigatus, A. niger and A. oryzae. BMC Microbiology. 2013;13:91. PubMed PMC

Ito Y., Peterson S.W., Goto T. Isolation and characterization of Aspergillus nomius from Japanese soil and silkworm excrements. Mycotoxins. 1998;46:9–15.

Ito Y., Peterson S.W., Wicklow D.T. Aspergillus pseudotamarii, a new aflatoxin producing species in Aspergillus section Flavi. Mycological Research. 2001;105:233–239.

Iwasaki T., Kosikowski F.V. Beta-nitropropionic acid in foods. Journal of Food Science. 1973;38:1162–1165.

Jahardhanan K.K., Sattar A., Husain A. Production of fumigaclavine A by Aspergillus tamarii Kita. Canadian Journal of Botany. 1984;30:247–250. PubMed

Junker B., Walker A., Connors N. Production of indole diterpenes by Aspergillus alliaceus. Biotechnology and Bioengineering. 2006;95:919–937. PubMed

Jurjević Ž., Kubátová A., Kolařík M. Taxonomy of Aspergillus section Petersonii section nov. encompassing indoor and soil-borne species with predominant tropical distribution. Plant Systematics and Evolution. 2015;301:2441–2462.

Katoh K., Standley D.M. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Molecular Biology and Evolution. 2013;30:772–780. PubMed PMC

Kaya-Celiker H., Malikarjunan P.K. Mid-infrared spectroscopy for discrimination and classification of Aspergillus species contamination in peanuts. Food Control. 2015;52:103–111.

Kildgaard S., Mansson M., Dosen I. Accurate dereplication of bioactive secondary metabolites from marine-derived fungi by UHPLC-DAD-QTOFMS and MS/HRMS library. Marine Drugs. 2014;12:3681–3705. PubMed PMC

Kim N.Y., Lee J.H., Lee I. An evaluation of aflatoxin and cyclopiazonic acid production in Aspergillus oryzae. Journal of Food Protection. 2014;77:1010–1016. PubMed

Klausmeyer P., McCloud T.G., Tucker K.D. Aspirochlorine class compounds from Aspergillus flavus inhibit azole-resistant Candida albicans. Journal of Natural Products. 2005;68:1300–1302. PubMed

Klich M.A. Aspergillus flavus: the major producer of aflatoxin. Molecular Plant Pathology. 2007;8:713–722. PubMed

Klich M.A., Pitt J.I. Differentiation of Aspergillus flavus from Aspergillus parasiticus and other closely related species. Transactions of the British Mycological Society. 1988;91:99–108.

Klitgaard A., Iversen A., Andersen M.R. Aggressive dereplication using UHPLC-DAD-QTOF – screening extracts for up to 3000 fungal secondary metabolites. Analytical and Bioanalytical Chemistry. 2014;406:1933–1943. PubMed PMC

Kreisel H., Schauer F. VEB Gustav Fischer Verlag; Jena: 1987. Methoden des mykologishen Laboratoriums.

Kretzer A., Li Y., Szaro T. Internal transcribed spacer sequences from 38 recognized species of Suillus sensu lato: phylogenetic and taxonomic implications. Mycologia. 1996;88:776–785.

Kumar S., Stecher G., Tamura K. MEGA7: Molecular Evolutionary Genetics Analysis version 7.0 for bigger datasets. Molecular Biology and Evolution. 2016;33:1870–1874. PubMed PMC

Kupfahl C., Michalka A., Lass-Flörl C. Gliotoxin production by clinical and environmental Aspergillus fumigatus strains. International Journal of Medical Microbiology. 2008;298:319–327. PubMed

Kurtzman C.P., Horn B.W., Hesseltine C.W. Aspergillus nomius, a new aflatoxin-producing species related to Aspergillus flavus and Aspergillus tamarii. Antonie van Leeuwenhoek. 1987;53:147–158. PubMed

Laakso J.A., Narske E.D., Gloer J.B. Isokotanins A-C: new bicoumarins from the sclerotia of Aspergillus alliaceus. Journal of Natural Products. 1994;57:128–133. PubMed

Lan W.J., Wang K.T., Xu M.Y. Secondary metabolites with chemical diversity from the marine-derived fungus Pseudallescheria boydii F19-1 and their cytotoxic activity. RCS Advances. 2016;6:76206–76213.

Lewis R.E., Wiederhold N.P., Lionakis M.S. Frequency and species distribution of gliotoxin-producing Aspergillus isolates recovered from patients in a tertiary-care cancer center. Journal of Clinical Microbiology. 2005;43:6120–6122. PubMed PMC

Liesch J.M., Hensens O.D., Springer J.D. Asperlicin, a novel non-peptide cholecystokinin antagonist from Aspergillus alliaceus. Structure elucidation. Journal of Antibiotics. 1985;38:1638–1641. PubMed

Liesch J.M., Hensens O.D., Zink D.L. Novel cholecystokinin antagonists from Aspergillus alliaceus. Journal of Antibiotics. 1988;41:878–881. PubMed

Linz J.E., Wee J., Roze L.V. Aspergillus parasiticus SU-1 genome sequence, predicted chromosome structure, and comparative gene expression under aflatoxin-inducing conditions: Evidence that differential expression contributed to species phenotype. Eukaryotic Cell. 2014;13:1113–1123. PubMed PMC

Liu L., Bao L., Wang L. Asperorydines A-M: Prenylated tryptophan-derived alkaloids with neurotrophic effects from Aspergillus oryzae. Journal of Organic Chemistry. 2018;83:812–822. PubMed

Liu Y.J., Whelen S., Hall B.D. Phylogenetic relationships among ascomycetes: evidence from an RNA polymerase II subunit. Molecular Biology and Evolution. 1999;16:1799–1808. PubMed

Luo J., Vogel R.F., Niessen L. Rapid deetction of aflatoxin producing fungi in food by real-time quantitative loop-mediated isothermal amplification. Food Microbiology. 2014;44:142–148. PubMed

Luo J., Taniwaki M.H., Iamanaka B.T. Application of loop-mediated isothermal amplification assays for direct identification of pure cultures of Aspergillus flavus, A. nomius and A. caelatus and for rapid detection in shelled Brazil nuts. International Journal of Food Microbiology. 2014;159:214–224. PubMed

Luk K.C., Kobbe B., Townsend J.M. Production of cyclopiazonic acid by Aspergillus flavus Link. Applied and Environmental Microbiology. 1977;33:211–212. PubMed PMC

Ma X., Peng J., Wu G. Speradines B-D, oxygenated cyclopiazonic aicd alkaloids from the sponge-derived fungus Aspergillus flavus MXH-X104. Tetrahedron. 2015;71:3522–3527.

Ma Y.-M., Ling X.-A., Zhang H.-C. Cytotoxic and antibiotic cyclic pentapeptide from an endophytic Aspergillus tamarii of Ficus carica. Journal of Agricultural and Food Chemistry. 2016;64:3789–3793. PubMed

Machida M., Asai K., Sano M. Genome sequencing and analysis of Aspergillus oryzae. Nature. 2005;438:1157–1161. PubMed

Malysheva S.V., Arroya-Manzanares N., Cary J.W. Identification of novel metabolites from Aspergillus flavus by high resolution and multiple stage mass spectrometry. Food Additives and Contaminants. 2014;31:111–120. PubMed

Manabe M., Tanaka K., Goto T. Producing capability of kojic acid and aflatoxin by koji mold. In: Kurata H., Ueno Y., editors. Toxigenic fungi their toxins and health hazards. Vol. 7. Kodansha; Tokyo: 1984. pp. 4–14. (Developments in Food Science).

Marchall É.J. Sur une espèce nouvelle du genre Aspergillus; A. terricola. Revue Mycologie. 1893;1893:101–103.

Martins L.M., de Souza Sant’Anna A., Fungaro M.H.P. The biodiversity of Aspergillus section Flavi and aflatoxins in the Brazilian peanut production chain. Food Research International. 2017;94:101–107. PubMed

Marui J., Ohashi-Kunihiro S., Ando T. Penicillin biosynthesis in Aspergillus oryzae and its overproduction by genetic engineering. Journal of Bioscience and Bioengineering. 2010;110:8–11. PubMed

Marui J., Yamana N., Ohashi-Kunihiro S. Kojic acid biosynthesis in Aspergillus oryzae is regulated by a Zn(II)(2)Cys(6) transcriptional activator and induced by kojic acid at the transcriptional level. Journal of Bioscience and Bioengineering. 2011;112:40–43. PubMed

Masclaux F., Guého E., de Hoog G.S., Christen R. Phylogenetic relationship of human-pathogenic Cladosporium (Xylohypha) species. Journal of Medical and Veterinary Mycology. 1995;33:327–338. PubMed

Massi F.P., Vieira M.L.C., Sartori D. Brazil nuts are subject to infection with B and G aflatoxin-producing fungus, Aspergillus pseudonomius. International Journal of Food Microbiology. 2014;186:14–21. PubMed

Matsuura S., Yamamoto M., Keneko Y. The structure of the pteridine glycoside from Aspergillus oryzae. Bulletin of the Chemical Society of Japan. 1972;45:492–495.

McAlpin C.E. An Aspergillus flavus mutant produces stipitate sclerotia and synnemata. Mycologia. 2001;93:552–565.

McAlpin C.E., Vesonder R.F., Xie W. A phytotoxic compound produced by Stilbothamnium togoense. Phytopathology. 2000;90:S50.

McNeill J., Barrie F.R., Buck W.R. Koeltz Scientific Books; Königstein: 2012. International Code of Nomenclature for algae, fungi, and plants (Melbourne Code): Adopted by the Eighteenth International Botanical Congress, Melbourne, Australia, July, 2011. Regnum Vegetabile 154.

Monti F., Ripamonti F., Hawser S.P. Aspirochlorine: A highly selective and potent inhibitor of fungal protein synthesis. Journal of Antibiotics. 1999;52:311–318. PubMed

Moore G.G., Mach G.M., Beltz S.B. Genomic sequence of the aflatoxigenic filamentous fungus Aspergillus nomius. BMC Genomics. 2015;16:551. PubMed PMC

Moore G.G., Mack B., Beltz S.B. Draft genome sequence of an aflatoxigenic Aspergillus species, A. bombycis. Genome Biology and Evolution. 2016;8:3297–3300. PubMed PMC

Moore G.G., Mack B.M., Beltz S.B. Genome sequence of an aflatoxigenic pathogen of Argentinean peanut, Aspergillus arachidicola. BMC Genomics. 2018;19:189. PubMed PMC

Morton H.E., Kocholaty W., Junowicz-Kocholaty R. Toxicity and antibiotic activity of kojic acid produced by Aspergillus luteo-virescens. Journal of Bacteriology. 1945;50:579–584. PubMed PMC

Mutegi C.K., Nguyi H.K., Hendriks S.L. Factors associated with the incidence of Aspergillus section Flavi and aflatoxin contamination of peanuts in the Busia and Homa Bay districts of western Kenya. Plant Pathology. 2012;61:1143–1153.

Nakamura S., Shimoda Y. Studies on an antibiotic substance oryzacidin, produced by Aspergillus oryzae. V. Existence of β-nitropropionic acid. Journal of the Agricultural Chemical Society of Japan. 1954;28:909–913.

Nesbitt B.F., O'Kelly J., Sargeant K. Toxic metabolites of Aspergillus flavus. Nature. 1962;195:1062–1063. PubMed

Nielsen K.F., Månsson M., Rank C. Dereplication of microbial natural products by LC-DAD-TOFMS. Journal of Natural Products. 2011;74:2338–2348. PubMed

Nielsen M.L., Nielsen J.B., Rank C. A genome-wide polyketide synthase deletion library uncovers novel genetic links to polyketides and meroterpenoids in Aspergillus nidulans. FEMS Microbiology Letters. 2011;321:157–166. PubMed

Nielsen K.F., Smedsgaard J. Fungal metabolite screening: database of 474 mycotoxins and fungal metabolites for dereplication by standardized liquid chromatography-UV-mass spectrometry methodology. Journal of Chromatography A. 2003;1002:111–136. PubMed

Nierman W.C., Yu J., Fedorova-Abrams N.D. Genome sequence of Aspergillus flavus NRRL 3357, a strain that causes aflatoxin contamination of food and feed. Genome Announcements. 2015;3:e00168–e00215. PubMed PMC

Nonoka N., Assai Y., Nishio M. TMC-2A, -2B, -2C, novel dipeptidyl peptidase IV inhibitors produced by Aspergillus oryzae A374. 1. Taxonomy of producing strain, fermentation and biochemical properties. Journal of Antibiotics. 1977;50:646–652. PubMed

Nováková A., Pižl V. Mycoflora in the intestine of Eisenia andrei (Oligochaeta, Lumbricidae) and in vermiculture substrates. Czech Mycology. 2003;55:83–102.

Nozawa K., Nakajima S., Kawai K. Bicoumarins from ascostromata of Petromyces alliaceus. Phytochemistry. 1994;35:1049–1051.

O'Donnell K. Fusarium and its near relatives. In: Reynolds D.R., Taylor J.W., editors. The Fungal Holomorph: Mitotic, Meiotic and Pleomorphic Speciation in Fungal Systematics. CAB International; Wallingford: 1993. pp. 225–233.

Ohara I. Classification of Aspergillus tamarii-oryzae group. Part 3. Diagnosis of the series, species and subspecies. Research Bulletin Gifu Imperial College of Agriculture. 1953;28:75–85.

Okoth S., Nyongesa B., Ayugi V. Toxigenic potential of Aspergillus species occurring on maize kernels from two agro-ecological zones in Kenya. Toxins. 2012;4:991–1007. PubMed PMC

Okoth S., De Boevre M., Vidal A. Genetic and toxigenic variability within Aspergillus flavus population isolated from maize in two diverse environments in Kenya. Frontiers in Microbiology. 2018;9:57. PubMed PMC

Olarte R.A., Horn B.W., Dorner J.W. Effect of sexual recombination on population diversity in aflatoxin production by Aspergillus flavus and evidence for cryptic heterokaryosis. Molecular Ecology. 2012;21:1453–1476. PubMed

Olarte R.A., Worthington C.J., Horn B.W. Enhanced diversity and aflatoxigenicity in interspecific hydrids of Aspergillus flavus and Aspergillus parasiticus. Molecular Ecology. 2015;24:1889–1909. PubMed

Olsen M., Johansson P., Möller T. Aspergillus nomius, an important aflatoxin producing species in Brazil nuts? World Mycotoxin Journal. 2008;1:123–126.

Orth R. Mycotoxins of Aspergillus oryzae strains for use in food industry as starters and enzyme-producing molds. Annals de Nutrition et Alimentation. 1977;31:617–624. PubMed

Palumbo J.D., O'Keeffe T.L., Mahoney N.E. Inhibition of ochratoxin A production and growth of Aspergillus species by phenolic antioxidant compounds. Mycopathologia. 2007;164:241–248. PubMed

Page R.D.M. TREEVIEW: an application to display phylogenetic trees on personal computers. Computer Applications in the Biosciences. 1996;12:357–358. PubMed

Payne G., Nierman W.C., Wortman J.R. Whole genome comparison of Aspergillus flavus and Aspergillus oryzae. Medical Mycology. 2006;44:S9–S11. PubMed

Perrone G., Gallo A., Logrieco A.F. Biodiversity of Aspergillus section Flavi in Europe in relation to management of aflatoxin risk. Frontiers in Microbiology. 2014;5 PubMed PMC

Perrone G., Haidukowski M., Stea G. Population structure and aflatoxin production by Aspergillus section from maize in Nigeria and Ghana. Food Microbiology. 2014;41:52–59. PubMed

Peterson S.W. Phylogenetic analysis of Aspergillus species using DNA sequences from four loci. Mycologia. 2008;100:205–226. PubMed

Peterson S.W., Ito Y., Horn B.W. Aspergillus bombycis, a new aflatoxigenic species and genetic variation in its sibling species, A. nomius. Mycologia. 2001;93:689–703.

Pildain M.B., Frisvad J.C., Vaamonde G. Two new aflatoxin producing Aspergillus species from Argentinean peanuts. International Journal of Systematic and Evolutionary Microbiology. 2008;58:725–735. PubMed

Pfefferle W., Anke H., Bross M. Asperfuran, a novel antifungal metabolite from Aspergillus oryzae. Journal of Antibiotics. 1990;43:648–654. PubMed

Pitt J.I., Hocking A.D., Glenn D.R. An improved medium for the detection of Aspergillus flavus and Aspergillus parasiticus. Journal of Applied Bacteriology. 1983;54:109–114. PubMed

Pitt J.I., Lange L., Lacey A.E. Aspergillus hancockii sp. nov., a biosynthetically talented fungus endemic to southeastern Australian soils. PLoS One. 2017;12 PubMed PMC

Probst C., Njapau H., Cotty P.J. Outbreak of an acute aflatoxicosis in Kenya in 2004: identification of the causal agent. Applied and Environmental Microbiology. 2007;73:2762–2764. PubMed PMC

Probst C., Bandyopadhyay R., Cotty P.J. Diversity of aflatoxin-producing fungi and their impact on food safety in sub-Saharan Africa. International Journal of Food Microbiology. 2014;174:113–122. PubMed

Probst C., Callicot K.A., Cotty P.J. Deadly strains of Kenyan Aspergillus are distinct from other aflatoxin producers. European Journal of Plant Pathology. 2012;132:419–429.

Probst C., Schulthess F., Cotty P.J. Impact of Aspergillus section Flavi community structure on the development of lethal levels of aflatoxins in Kenyan maize (Zea mays) Journal of Applied Microbiology. 2010;108:600–610. PubMed

Rambaut A., Drummond A.J. 2009. Tracer v. 1.5.http://tree.bio.ed.ac.uk/software/tracer/ Available from:

Rank C., Klejnstrup M.L., Petersen L.M. Comparative chemistry of Aspergillus oryzae (RIB40) and A. flavus (NRRL 3357) Metabolites. 2012;2:39–56. PubMed PMC

Rank C., Nielsen K.F., Larsen T.O. Distribution of sterigmatocystin in filamentous fungi. Fungal Biology. 2011;115:406–420. PubMed

Raper K.B., Fennell D.I. Williams & Wilkins; Baltimore: 1965. The genus Aspergillus.

Rayner R.W. CMI and British Mycological Society; Kew, Surrey, England: 1970. A mycological colour chart.

Reategui R., Rhea J., Adophsen J. Leporizine A-C: Epithiodiketopiperazines isolated from Aspergillus species. Journal of Natural Products. 2013;76:1523–1527. PubMed

Riba A., Mokranes S., Mathiu F. Mycoflora and ochratoxin A producing strains of Aspergillus in Algerian wheat. International Journal of Food Microbiology. 2008;122:85–92. PubMed

Robert M., Barbier M., Lederer E. Two new natural phytotoxins. Aspergillomarasmines A and B and their identity to lycomarasmine and its derivatives. Bulletin de la Societe Chimique de France. 1962;1962:187–198.

Ronquist F., Teslenko M., van der Mark P. MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space. Systematic Biology. 2012;61:539–542. PubMed PMC

Runa F., Carbone I., Bhatnagar D. Nuclear heterogeneity in conidial populations of Aspergillus flavus. Fungal Genetics and Biology. 2015;84:62–72. PubMed

Saito M., Tsuruta O. A new variety of Aspergillus flavus from tropical soil in Thailand and its aflatoxin productivity. Proceedings of the Japanese Association of Mycotoxicology. 1993;37:31–36.

Saito T. An antibiotic substance produced by Aspergillus oryzae. Shokuryô no Kagaku (Science of Foods) 1946–1947;14 299–300, 326.

Sakata K., Kuwatsuka T., Sakurai A. Isolation of aspirochlorin (= antibiotic A30641) as a true anti-microbial constituent of the antibiotic oryzachlorin, from Aspergillus oryzae. Agricultural and Biological Chemistry. 1983;47:2673–2674.

Sakata K., Maruyama M., Uzawa J. Structural revision of aspirochlorine (=antibiotic A30461), a novel epidithiopiperazine-2,5-dione produced by Aspergillus spp. Tetrahedron Letters. 1987;28:5607–5610.

Sakata K., Masago H., Sakurai A. Isolation of aspirochlorine (= antibiotic A30461) possessing a novel diketopiperazine structure from Aspergillus flavus. Tetrahedron Letters. 1982;23:2095–2098.

Saldan N.C., Almeida R.T.R., Avíncola A. Development of an analytical method for identification of Aspergillus flavus based on chemical markers using HPLC-MS. Food Chemistry. 2018;241:113–121. PubMed

Samson R.A., Gams W. Typification of the species of Aspergillus and associated teleomorphs. In: Samson R.A., Pitt J.I., editors. Advances in Penicillium and Aspergillus Systematics. Plenum Press; New York: 1985. pp. 143–154.

Samson R.A., Hoekstra E.S., Frisvad J.C., Filtenborg O. Methods for the detection and isolation of food-borne fungi. In: Samson R.A., Hoekstra E.S., Frisvad J.C., Filtenborg O., editors. Introduction to foodborne fungi. Centraalbureau voor Schimmelcultures; Utrecht (The Netherlands): 1995. pp. 235–242.

Samson R.A., Hong S.-B., Frisvad J.C. Old and new concepts of species differentiation in Aspergillus. Medical Mycology. 2006;44:S133–S144. PubMed

Samson R.A., Samson R.A., Visagie C.M. Phylogeny, identification and nomenclature of the genus Aspergillus. Studies in Mycology. 2014;78:141–173. PubMed PMC

Samson R.A., Seifert K.A. The ascomycete genus Penicilliopsis and its anamorphs. In: Samson R.A., Pitt J.I., editors. Advances in Penicillium and Aspergillus systematics. Plenum Press; New York: 1986. pp. 397–428.

Sato N., Horiuchi T., Hamano M. Kojistatin A, a new cysteine protease inhibitor produced by Aspergillus oryzae. Bioscience, Biotechnology and Biochemistry. 1996;60:1747–1748.

Sato A., Oshima K., Noguchi H. Draft genome sequencing and comparative analysis of Aspergillus sojae NBRC 34239. DNA Research. 2011;18:165–176. PubMed PMC

Schroeder H.W. Effect of corn steep liquor on mycelial growth and aflatoxin production in Aspergillus parasiticus. Applied Microbiology. 1966;14:381–385. PubMed PMC

Shinohara Y., Takahashi S., Osada H. Identification of a novel sesquiterpene biosynthetic machinery involved in astellolide biosynthesis. Scientific Reports. 2016;6 PubMed PMC

Shinohara Y., Kawatani M., Futamura Y. An overproduction of astellolides induced by genetic disruption of chromatin-remodelling factors in Aspergillus oryzae. Journal of Antibiotics. 2016;69:4–8. PubMed

Shiomi K., Hatae K., Yamaguchi Y. New antibiotics miyakamides produced by a fungus. Journal of Antibiotics. 2002;55:952–961. PubMed

Smedsgaard J. Micro-scale extraction procedure for standardized screening of fungal metabolite production in cultures. Journal of Chromatography A. 1997;760:264–270. PubMed

Stamatakis A., Alachiotis N. Time and memory efficient likelihood-based tree searches on phylogenomic alignments with missing data. Bioinformatics. 2010;26:i132–i139. PubMed PMC

Soares C., Rodriguez P., Peterson S.W. Three new species of Aspergillus section Flavi isolated from almonds and maize in Portugal. Mycologia. 2012;104:682–697. PubMed

Sobolev V.S., Cole R.J., Dorner J.W. Isolation and structure elucidation of a new metabolite produced by Aspergillus parasiticus. Journal of Natural Products. 1997;60:847–850.

Son B.W., Choi J.S., Kim J.C. Parasitenone, a new epoxycyclohexenone related to gabosine from the marine-derived fungus Aspergillus parasiticus. Journal of Natural Products. 2002;65:794–795. PubMed

Springer J.P., Büchi G., Kobbe B. The structure of ditryptophenaline – a new metabolite of Aspergillus flavus. Tetrahedron Letters. 1977;18:2403–2406.

States J.S., Christensen M. Aspergillus leporis a new species related to Aspergillus flavus. Mycologia. 1966;58:738–742.

Staub G.M., Gloer J.B., Wicklow D.T. Aspernomine: a new cytotoxic antiinsectan metabolite with a novel ring system from the sclerotia of Aspergillus nomius. Journal of the American Chemical Society. 1992;114:1015–1017.

Staub G.M., Gloer K.B., Gloer J.B. New paspalinine derivatives from the sclerotia of Aspergillus nomius. Tetrahedron Letters. 1993;34:2569–2572.

Stierle A.A., Stierle D.B., Bugni T. Sequoiatones A and B: Novel antitumor metabolites isolated from a redwood endophyte. Journal of Organic Chemistry. 1999;64:5479–5484. PubMed

Stierle A.A., Stierle D.B., Bugni T. Sequioatones C-F, constituents of the redwood endophyte Aspergillus parasiticus. Journal of Natural Products. 2001;64:1350–1353. PubMed

Stierle D.B., Stierle A.A., Bugni T. Sequioamonascins A-D: novel anticancer metabolites isolated from a redwood endophyte. Journal of Organic Chemistry. 2003;68:4966–4969. PubMed

Stubblefield R.D., Shotwell O.L., Shannon G.M. Parasiticol – a new metabolite from Aspergillus parasiticus. Journal of Agricultural and Food Chemistry. 1970;18:391–393. PubMed

Sun K., Li Y., Guo L. Indole diterpenoids and isocoumarin from the fungus, Aspergillus flavus, isolated from the prawn Penaeus vannamei. Marine Drugs. 2014;12:3970–3981. PubMed PMC

Tamogami S., Katayama M., Marumo S. Synthesis of 5-demethyl-6-deoxy analogue of sporogen AO1, a sporogenic substance produced by Aspergillus oryzae. Bioscience, Biotechnology and Biochemistry. 1996;60:1372–1374.

Tanaka K., Goto T., Manabe M. Traditional Japanese fermented food free from mycotoxin contamination. JARQ – Japan Agricultural Research Quarterly. 2002;36:45–50.

Tang M.C., Lin H.C., Li D.H. Discovery of unclustered fungal indole diterpene biosynthetic pathways through combinatorial pathway reassembly in engineered yeast. Journal of the American Chemical Society. 2015;137:13724–13727. PubMed PMC

Taniwaki M.H., Frisvad J.C., Ferranti L.S. Biodiversity of mycobiota throughout the Brazil nut supply chain: From rainforest to consumer. Food Microbiology. 2017;61:14–22. PubMed

Taniwaki M.H., Pitt J.I., Iamanaka B.T. Aspergillus bertholletius sp. nov. from Brazil nuts. PLoS One. 2012;7 PubMed PMC

Taylor J.W., Jacobson D.J., Kroken S. Phylogenetic species recognition and species concepts in Fungi. Fungal Genetics and Biology. 2000;31:21–32. PubMed

TePaske M.R., Gloer J.B., Wicklow D.T. Aflavazole – a new intiinsectan carbazole metabolite from the sclerotia of Aspergillus flavus. Journal of Organic Chemistry. 1990;55:5299–5301.

TePaske M.R., Gloer J.B., Wicklow D.T. Leporin A – an antiinsectan N-alkoxypyridone from the sclerotia of Aspergillus leporis. Tetrahedron Letters. 1991;32:5687–5690.

TePaske M.R., Gloer J.B., Wicklow D.T. Aflavarin and beta-aflatrem – new antiinsectan metabolites from the sclerotia of Aspergillus flavus. Journal of Natural Products. 1992;55:1080–1086. PubMed

Terebayashi Y., Sano M., Yamani N. Identification and characterization of genes responsible for biosynthesis of kojic acid, an industrially important compound from Aspergillus oryzae. Fungal Genetics and Biology. 2010;47:953–961. PubMed

Thom C., Church M.B. Williams and Wilkins; Baltimore: 1926. The Aspergilli.

Thom C., Raper K.B. Williams and Wilkins; Baltimore: 1945. A manual of the Aspergilli.

Tokuoka M., Kikuchi T., Shinohara Y. Cyclopiazonic acid biosynthetic cluster gene cpaM is required for speradine A biosynthesis. Bioscience, Biotechnology and Biochemistry. 2015;79:2081–2085. PubMed

Tsuda M., Mugishima T., Komatsu K. Speradine A, a new pentacyclic oxindole alkaloid from a marine-derived fungus Aspergillus tamarii. Tetrahedron. 2003;59:3227–3230.

Turner W.B. Academic Press; London: 1971. Fungal metabolites.

Turner W.B., Aldridge D.C. Academic Press; London: 1983. Fungal metabolites II.

Uka V., Moore G.G., Arroyo-Manzanares N. Unravelling the diversity of the cyclopiazonic acid family of mycotoxins in Aspergillus flavus by UHPLC triple-TOF HRMS. Toxins. 2017;9:35. PubMed PMC

Umemura M., Koyama Y., Takeda I. Fine de novo sequencing of a fungal genome using only SOLiD short read data: verification on Aspergillus oryzae RIB 40. PloS One. 2013;8 PubMed PMC

Umemura M., Koike H., Nagano T. MIDDAS-M: Motif-independent de novo detection of secondary metabolite gene clusters through the integration og genome sequencing and transcriptome data. PloS One. 2013;8 PubMed PMC

Umemura M., Nagano N., Koike H. Characterization of the biosynthetic gene cluster for the ribosomally sunthesized cyclic peptide ustiloxin B in Aspergillus flavus. Fungal Genetics and Biology. 2014;68:23–30. PubMed

Van der Merwe K.J., Steyn P.S., Fourie L. Ochratoxin A, a toxic metabolite produced by Aspergillus ochraceus Wilh. Nature. 1965;205:1112–1113. PubMed

Varga J., Frisvad J.C., Samson R.A. A reappraisal of fungi producing aflatoxin. World Mycotoxin Journal. 2009;2:263–277.

Varga J., Baranyi N., Chandrasekaran M. Mycotoxin production in the genus Aspergillus: an update. Acta Biologica Szegediensis. 2015;59:151–167.

Varga J., Frisvad J.C., Samson R.A. Two new aflatoxin producing species and an overview of Aspergillus section Flavi. Studies in Mycology. 2011;69:57–80. PubMed PMC

Varga J., Kevei E., Palagyi A. Genetic variability within the toxigenic Petromyces genus. Cereal Research Communications. 1997;25:285–289.

Viaro H.P., da Silva J.J., Ferranti L.D. The first report of Aspergillus novoparasiticus, A. arachidicola and A. pseudocaelatus in Brazilian corn kernels. International Journal of Food Microbiology. 2017;243:46–51. PubMed

Wagacha J.M., Mutegi C., Karanja Fungal species isolated from peanuts in major Kenyan marketed peanuts: Emphasis on Aspergillus section Flavi. Crop Protection. 2013;52:1–9.

Walker J.C., Murphy A. Onion-bulb decay caused by Aspergillus alliaceus. Phytopathology. 1934;24:289–291.

White T.J., Bruns T., Lee S. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: Innis M.A., editor. PCR protocols: a guide to methods and applications. Academic Press; San Diego: 1990. pp. 315–322.

White E.C., Hill J.H. Studies in the antibacterial products formed by moulds. I. Aspergillic acid, a product of a strain of Aspergillus flavus. Journal of Bacteriology. 1943;45:433–443. PubMed PMC

Wicklow D.T. Adaptation in wild and domesticated yellow-green aspergilli. In: Kurata H., Ueno Y., editors. Toxigenic fungi their toxins and health hazards. Vol. 7. Kodansha; Tokyo: 1984. pp. 78–86. (Developments in Food Science).

Wicklow D.T. Aspergillus leporis sclerotium formation on rabbit dung. Mycologia. 1985;77:531–534.

Wicklow D.T., Dowd P.F., Alfatafta A.A. Ochratoxin A: An antiinsectan metabolite from the sclerotia of Aspergillus carbonarius NRRL 369. Canadian Journal of Microbiology. 1996;42:1100–1103. PubMed

Wicklow D.T., McAlpin C.E. Cultural conditions promoting sclerotium formation in Stilbothamnium togoense. Mycologia. 1990;82:165–169.

Wicklow D.T., Shotwell O.L. Intrafungal distribution of aflatoxins among conidia and sclerotia of Aspergillus flavus and Aspergillus parasiticus. Canadian Journal of Microbiology. 1983;29:1–5. PubMed

Wicklow D.T., McAlpin C.E., Peterson S.W. Common genotypes (RFLP) within a diverse collection of yellow-green aspergilli used to produce traditional Oriental fermented foods. Mycoscience. 2002;43:289–297.

Wicklow D.T., Vesonder R.F., McAlpin C.E. Examination of Stilbothamnium togoense for Aspergillus flavus group mycotoxins. Mycotaxon. 1989;34:249–252.

Yamada T., Hiratake J., Aikawa M. Cysteine protease inhibitors produced by the industrial koji mold, Aspergillus oryzae O-1018. Bioscience, Biotechnology and Biochemistry. 1998;62:907–914. PubMed

Ye Y., Minami A., Igarashi Y. Unveiling the biosynthetic pathway of the ribosomally synthesized and post-translationally modified peptide ustiloxin B in filamentous fungi. Angewandte Chemie International Edition. 2016;55:8072–8075. PubMed

Yokotsuka T., Oshita K., Kikuchi T. Studies on the compounds produced by molds. Part VI. Aspergillic acid, kojic acid, β-nitropropionic acid and oxalic acid in solid-koji. Journal of the Agricultural Chemical Society. 1969;43:189–196.

Zeringue H.J., Jr., Shin B.Y., Maskos K. Identification of the bright-greenish-yellow-fluorescence (BGY-F) compound on cotton lint associated with aflatoxin contamination in cottonseed. Phytochemistry. 1999;52:1391–1397. PubMed

Zhao G., Yao Y., Chen W. Comparison and analysis of the genomes of two Aspergillus oryzae strains. Journal of Agricultural and Food Chemistry. 2013;61:7805–7809. PubMed

Zhao G., Yao Y., Hou L. Draft genome sequence of Aspergillus oryzae 100-8, an increased acid protease production strain. Genome Announcements. 2014;2:e00548–e00614. PubMed PMC

Zhao G., Yao Y., Qi W. Draft genome sequence of Aspergillus oryzae strain 3-042. Eukaryotic Cell. 2012;11:1178. PubMed PMC

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...