Factors That Predict the Growth of Residual Nonfunctional Pituitary Adenomas: Correlations between Relapse and Cell Cycle Markers

. 2018 ; 2018 () : 1876290. [epub] 20180710

Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid30112364

INTRODUCTION: Nonfunctional pituitary adenomas are treated surgically, and even partial resection can improve or eliminate clinical symptoms. Notably, progression requires further intervention, which presents an increased risk, especially in older patients. This study investigated whether the histopathological characteristics of nonfunctional adenomas could predict recurrence. MATERIALS AND METHODS: Data were obtained retrospectively from 30 patients who underwent surgery for the partial resection of pituitary adenomas. Remnant tumor growth was observed in 17 patients, while the residual tumor was unchanged more than 7 years after surgery in 13 patients. Statistical analysis was performed to investigate correlations between remnant tumor progression and tumor histopathological findings, including protein expression of p21, p27, p53, and Ki-67. RESULTS AND DISCUSSION: Remnant tumors that demonstrated regrowth showed significantly higher protein expression of p21 and Ki-67. Expression of the p53 tumor suppressor was also higher in this group, but the difference was at the limit of statistical significance. CONCLUSION: Tumors with high expression of p21 and p53 and with a high Ki-67 index were more likely to show residual pituitary adenoma progression. Such cases should undergo frequent radiological examination and timely reoperation, and radiosurgery should be considered.

Zobrazit více v PubMed

Berkmann S., Schlaffer S., Nimsky C., Fahlbusch R., Buchfelder M. Follow-up and long-term outcome of nonfunctioning pituitary adenoma operated by transsphenoidal surgery with intraoperative high-field magnetic resonance imaging. Acta Neurochirurgica. 2014;156(12):2233–2243. doi: 10.1007/s00701-014-2210-x. PubMed DOI

Harper J. W., Elledge S. J., Keyomarsi K., et al. Inhibition of cyclin-dependent kinases by p21. Molecular Biology of the Cell (MBoC) 1995;6(4):387–400. doi: 10.1091/mbc.6.4.387. PubMed DOI PMC

Lee J., Kim S. S. The function of p27KIP1 during tumor development. Experimental & Molecular Medicine. 2009;41(11):765–771. doi: 10.3858/emm.2009.41.11.102. PubMed DOI PMC

Liu J., Zhang C., Hu W., Feng Z. Tumor suppressor p53 and its mutants in cancer metabolism. Cancer Letters. 2015;356(2):197–203. doi: 10.1016/j.canlet.2013.12.025. PubMed DOI PMC

Brochier S., Galland F., Kujas M., et al. Factors predicting relapse of nonfunctioning pituitary macroadenomas after neurosurgery: a study of 142 patients. European Journal of Endocrinology. 2010;163(2):193–200. doi: 10.1530/eje-10-0255. PubMed DOI

Solheim O., Selbekk T., Løvstakken L., et al. Intrasellar ultrasound in transsphenoidal surgery: A novel technique. Neurosurgery. 2010;66(1):173–185. doi: 10.1227/01.NEU.0000360571.11582.4F. PubMed DOI

Netuka D., Masopust V., Belšán T., Kramář F., Beneš V. Intraoperative Imaging. Vol. 109. Vienna: Springer Vienna; 2011. One Year Experience with 3.0 T Intraoperative MRI in Pituitary Surgery; pp. 157–159. (Acta Neurochirurgica Supplementum). PubMed DOI

Asa S. Tumors of the pituitary gland. AFIP atlas of tumor pathology. American Registry of Pathology. 2011;15

Lee E. H., Kim K. H., Kwon J. H., Kim H. D., Kim Y. Z. Results of immunohistochemical staining of cell-cycle regulators: The prediction of recurrence of functioning pituitary adenoma. World Neurosurgery. 2014;81(3-4):563–575. doi: 10.1016/j.wneu.2013.09.035. PubMed DOI

Messerer M., de Battista J. C., Raverot G., et al. Evidence of improved surgical outcome following endoscopy for nonfunctioning pituitary adenoma removal: Personal experience and review of the literature. Neurosurgical Focus. 2011;30(4) PubMed

Salehi F., Agur A., Scheithauer B. W., Kovacs K., Lloyd R. V., Cusimano M. Ki-67 in pituitary neoplasms: a review—part I. Neurosurgery. 2009;65(3):429–437. doi: 10.1227/01.neu.0000349930.66434.82. PubMed DOI

Gejman R., Swearingen B., Hedley-Whyte E. T. Role of Ki-67 proliferation index and p53 expression in predicting progression of pituitary adenomas. Human Pathology. 2008;39(5):758–766. doi: 10.1016/j.humpath.2007.10.004. PubMed DOI

Chiloiro S., Bianchi A., Doglietto F., et al. Radically resected pituitary adenomas: Prognostic role of Ki 67 labeling index in a monocentric retrospective series and literature review. The Pituitary Society. 2014;17(3):267–276. doi: 10.1007/s11102-013-0500-6. PubMed DOI

DeLellis R. A., Lloyd R. V., Heitz P. U. Pathology and genetics – Tumours of endocrine organs. WHO Classification of Tumours. Lyon: IARC Press; 2004.

Šteňo A., Bocko J., Rychlý B., et al. Nonfunctioning pituitary adenomas: Association of Ki-67 and HMGA-1 labeling indices with residual tumor growth. Acta Neurochirurgica. 2014;156(3):451–461. doi: 10.1007/s00701-014-1993-0. PubMed DOI

Cesák T., Náhlovský J., Hosszú T. Longitudinální sledování rustu pooperacních reziduí afunkcních adenomu hypofýzy. Ceska A Slovenska Neurologie A Neurochirurgie Journal. 2009;105:115–124.

Losa M., Mortini P., Barzaghi R., et al. Early results of surgery in patients with nonfunctioning pituitary adenoma and analysis of the risk of tumor recurrence. Journal of Neurosurgery. 2008;108(3):525–532. doi: 10.3171/JNS/2008/108/3/0525. PubMed DOI

Trouillas J. In search of a prognostic classification of endocrine pituitary tumors. Endocrine Pathology. 2014;25(2):124–132. doi: 10.1007/s12022-014-9322-y. PubMed DOI

Saeger W., Honegger J., Theodoropoulou M., et al. Clinical impact of the current WHO classification of pituitary adenomas. Endocrine Pathology. 2016;27(2):104–114. doi: 10.1007/s12022-016-9418-7. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...