Synthesis and Coordination Behavior of a Flexible Bis(phosphinoferrocene) Ligand
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
PubMed
30115850
PubMed Central
PMC6222319
DOI
10.3390/molecules23082054
PII: molecules23082054
Knihovny.cz E-zdroje
- Klíčová slova
- ferrocene ligands, gold, palladium, phosphines, structure elucidation,
- MeSH
- fosfiny chemie MeSH
- komplexní sloučeniny chemická syntéza MeSH
- krystalografie rentgenová MeSH
- ligandy MeSH
- metaloceny chemie MeSH
- molekulární struktura MeSH
- palladium chemie MeSH
- železo chemie MeSH
- zlato chemie MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- fosfiny MeSH
- komplexní sloučeniny MeSH
- ligandy MeSH
- metaloceny MeSH
- palladium MeSH
- železo MeSH
- zlato MeSH
A symmetrical flexible bis(phosphinoferrocene) derivative, viz. bis[1'-(diphenylphosphino)ferrocenyl]methane (1), was prepared and studied as a ligand in Pd(II) and Au(I) complexes. The reactions of 1 with [PdCl₂(cod)] (cod = cycloocta-1,5-diene) and [Pd(μ-Cl)(LNC)]₂ (LNC = [2-(dimethylamino-κN)methyl]phenyl-κC¹) produced bis(phosphine) complex trans-[PdCl₂(1-κ²P,P')] (4), wherein the ligand spans trans positions in the square-planar coordination sphere of Pd(II) and the tetranuclear, P,P-bridged complex [(μ(P,P')-1){PdCl(LNC)}₂] (5), respectively. In reactions with the Au(I) precursors [AuCl(tht)] and [Au(tht)₂][SbF₆] (tht = tetrahydrothiophene), ligand 1 gave rise to tetranuclear Au₂Fe₂ complex [(μ(P,P')-1)(AuCl)₂] (6) and to symmetrical macrocyclic tetramer [Au₄(μ(P,P')-1)₄][SbF₆]₄ (7). All compounds were characterized by spectroscopic methods. In addition, the structures of compound 1, its synthetic precursor bis[1'-(diphenylphosphino)ferrocenyl]methanone (3), and all aforementioned Pd(II) and Au(I) complexes were determined by single-crystal X-ray diffraction analysis (some in solvated form).
Zobrazit více v PubMed
Togni A., Hayashi T. Ferrocenes: Homogeneous Catalysis, Organic Synthesis, Materials Chemistry. VCH; Weinheim, Germany: 1995.
Štěpnička P. Ferrocenes: Ligands, Materials and Biomolecules. Wiley; Chichester, UK: 2008.
Atkinson R.C.J., Gibson V.C., Long N.J. The syntheses and catalytic applications of unsymmetrical ferrocene ligands. Chem. Soc. Rev. 2004;33:313–328. doi: 10.1039/b316819k. PubMed DOI
Gómez Arrayás R., Adrio J., Carretero J.C. Recent applications of chiral ferrocene ligands in asymmetric catalysis. Angew. Chem. Int. Ed. 2006;45:7674–7715. doi: 10.1002/anie.200602482. PubMed DOI
Sawamura M., Yamauchi A., Takegawa T., Ito Y. Synthesis of 2,2′′-bis(diphenylphosphino)-1,1′′-biferrocene, a planar chiral bisphosphine, and its palladium(II) complex. J. Chem. Soc. Chem. Commun. 1991:874–875. doi: 10.1039/C39910000874. DOI
Espino G., Xiao L., Puchberger M., Mereiter K., Spindler F., Manzano B.R., Jalón F.A., Weissensteiner W. Synthesis, coordination behaviour, structural features and use in asymmetric hydrogenations of bifep-type biferrocenes. Dalton Trans. 2009:2751–2763. doi: 10.1039/b816544k. PubMed DOI
Sawamura M., Hamashima H., Ito Y. Catalytic asymmetric synthesis with trans-chelating chiral diphosphine ligand TRAP: rhodium-catalyzed asymmetric Michael addition of. alpha-cyano carboxylates. J. Am. Chem. Soc. 1992;114:8295–8296. doi: 10.1021/ja00047a053. DOI
Sawamura M., Hamashima H., Sugawara M., Kuwano R., Ito Y. Synthesis and structures of trans-chelating chiral diphosphine ligands bearing aromatic p-substituents, (S,S)-(R,R)- and (R,R)-(S,S)-2,2′′-bis[1-(diarylphosphino)ethyl]-1,1′′-biferrocene (ArylTRAPs) and their transition metal complexes. Organometallics. 1995;14:4549–4558. doi: 10.1021/om00010a020. DOI
Trost B.M., van Vranken D.L., Bingel C. A modular approach for ligand design for asymmetric allylic alkylations via enantioselective palladium-catalyzed alkylations. J. Am. Chem. Soc. 1992;114:9327–9343. doi: 10.1021/ja00050a013. DOI
You S.-L., Hou X.-L., Dai L.-X., Cao B.-X., Sun J. Novel bis-N-[2-(diphenylphosphino)ferrocenyl- carbonyl]diaminocyclohexane ligands: Application in asymmetric allylic alkylation of imino esters with simple allyl carbonate. Chem. Commun. 2000:1933–1934. doi: 10.1039/b003804k. DOI
Longmire J.M., Wang B., Zhang X. Highly efficient kinetic resolution of 2-cyclohexenyl acetate in Pd-catalyzed allylic alkylation. Tetrahedron Lett. 2000;41:5435–5439. doi: 10.1016/S0040-4039(00)00844-3. DOI
Horikoshi R., Mochida T., Torigoe R., Yamamoto Y. Preparation and electrochemical properties of polynuclear organometallic complexes derived from ferrocene-containing bidentate ligands. Eur. J. Inorg. Chem. 2002;2002:3197–3203. doi: 10.1002/1099-0682(200212)2002:12<3197::AID-EJIC3197>3.0.CO;2-T. DOI
Lohan M., Milde B., Heider S., Speck J.M., Krausse S., Schaarschmidt D., Rueffer T., Lang H. Synthesis, electrochemistry, spectroelectrochemistry, and solid-state structures of palladium biferrocenylphosphines and their use in C, C cross-coupling reactions. Organometallics. 2012;31:2310–2326. doi: 10.1021/om201220w. DOI
Butler I.R., Cullen W.R. The synthesis of α-N,N-dimethyl-1′-diphenylphosphinoferrocenylethylamine and related ligands. Can. J. Chem. 1983;61:147–153. doi: 10.1139/v83-026. DOI
Štěpnička P. 1’-Functionalised ferrocene phosphines: Synthesis, coordination chemistry and catalytic applications. In: Štěpnička P., editor. Ferrocenes: Ligands, Materials and Biomolecules. Wiley; Chichester, UK: 2008. pp. 177–204. Chapter 5.
Barreiro E.M., Broggini D.F.D., Adrio L.A., White A.J.P., Schwenk R., Togni A., Hii K.K. Gold(I) complexes of conformationally constricted chiral ferrocenyl phosphines. Organometallics. 2012;31:3745–3754. doi: 10.1021/om300222k. DOI
Podlaha J., Štěpnička P., Gyepes R., Mareček V., Lhotský A., Polášek M., Kubišta J., Nejezchleba M. Hydrophobic ferrocene derivatives as potential standards in electrochemistry. Collect. Czech. Chem. Commun. 1997;62:185–198. doi: 10.1135/cccc19970185. DOI
Butler I.R., Davies R.L. A rapid convenient synthesis of ferrocene-based triphos analogue ligands. Synthesis. 1996:1350–1354. doi: 10.1055/s-1996-4394. DOI
Spectral Database for Organic Compounds SDBS Benzophenone, SDBS No. 1294. [(accessed on 23 July 2018)]; Available online: https://sdbs.db.aist.go.jp/sdbs/cgi-bin/cre_index.cgi.
Ferguson G., Glidewell C., Opromolla G., Zakaria C.M., Zanello P. The redox behaviour of some bis-ferrocenyl compounds: crystal and molecular structures of diferrocenylmethane and diferrocenylmethanol. J. Organomet. Chem. 1996;517:183–190. doi: 10.1016/0022-328X(96)06199-2. DOI
Allen F.H., Kennard O., Watson D.G., Brammer L., Orpen A.G., Taylor R. Tables of bond lengths determined by X-ray and neutron diffraction. Part 1. Bond lengths in organic compounds. J. Chem. Soc. Perkin Trans. 2. 1987:S1–S19. doi: 10.1039/p298700000s1. DOI
Bratych N., Hassall K., White J. Redetermination of the structure of diferrocenyl ketone at low temperature. Acta Crystallogr. Sect. E Struct. Rep. Online. 2003;59:m33–m35. doi: 10.1107/S1600536802022262. DOI
Barnard C.J., Russell M.J.H. Palladium. In: Wilkinson G., Gillard R.D., McCleverty J.A., editors. Comprehesive Coordination Chemistry. Volume 5. Pergamon Press; Oxford, UK: 1997. pp. 1099–1170. Chapter 51.
Puddephatt R.J. Gold. In: Wilkinson G., Gillard R.D., McCleverty J.A., editors. Comprehesive Coordination Chemistry. Volume 5. Pergamon Press; Oxford, UK: 1997. pp. 862–923. Chapter 55.
Zábranský M., Císařová I., Štěpnička P. Synthesis, coordination, and catalytic use of 1′-(diphenylphosphino) ferrocene-1-sulfonate anion. Organometallics. 2018;37:1615–1626. doi: 10.1021/acs.organomet.8b00178. DOI
Hersh W.H. False AA’X spin-spin coupling systems in 13C-NMR: Examples involving phosphorus and a 20-year-old mystery in off-resonance decoupling. J. Chem. Educ. 1997;74:1485–1488. doi: 10.1021/ed074p1485. DOI
Štěpnička P., Schulz J., Klemann T., Siemeling U., Císařová I. Synthesis, structural characterization, and catalytic evaluation of palladium complexes with homologous ferrocene-based pyridylphosphine ligands. Organometallics. 2010;29:3187–3200. doi: 10.1021/om100339p. DOI
Zábranský M., Machara A., Císařová I., Štěpnička P. Palladium(II) complexes of homologated ferrocene phosphanylether and thioether ligands. Eur. J. Inorg. Chem. 2017;2017:4850–4860. doi: 10.1002/ejic.201701057. DOI
Gan K.-S., Hor T.S.A. 1,1′-Bis(diphenylphosphino)ferrocene. Coordination chemistry, organic syntheses, and catalysis. In: Togni A., Hayashi T., editors. Ferrocenes: Homogeneous Catalysis, Organic Synthesis, Materials Chemistry. VCH; Weinheim, Germany: 1995. pp. 3–104. Chapter 1.
Yang L., Powell D.R., Houser R.P. Structural variation in copper(I) complexes with pyridylmethylamide ligands: structural analysis with a new four-coordinate geometry index, τ 4. Dalton Trans. 2007:955–964. doi: 10.1039/B617136B. PubMed DOI
Roessler K., Rueffer T., Walfort B., Packheiser R., Holze R., Zharnikov M., Lang H. Synthesis, characterization and electrochemical behavior of unsymmetric transition metal-terminated biphenyl ethynyl thiols. J. Organomet. Chem. 2007;692:1530–1545. doi: 10.1016/j.jorganchem.2006.12.002. DOI
Aguado J.E., Canales S., Gimeno M.C., Jones P.G., Laguna A., Villacampa M.D. Group 11 complexes with unsymmetrical P, S and P, Se disubstituted ferrocene ligands. Dalton Trans. 2005:3005–3015. doi: 10.1039/b507058a. PubMed DOI
Škoch K., Císařová I., Štěpnička P. Synthesis and catalytic use of gold(I) complexes containing a hemilabile phosphanylferrocene nitrile donor. Chem. Eur. J. 2015;21:15998–16004. doi: 10.1002/chem.201502968. PubMed DOI
Dunstan S.P.C., Healy P.C., Sobolev A.N., Tiekink E.R.T., White A.H., Williams M.L. Isomorphism in the structural chemistry of two-coordinate adducts of diphenyl(2-formylphenyl)phosphine and triphenylphosphine with gold(I) halides. J. Mol. Struct. 2014;1072:253–259. doi: 10.1016/j.molstruc.2014.05.020. DOI
Inagaki F., Matsumoto C., Okada Y., Maruyama N., Mukai C. Air-stable cationic gold(I) catalyst featuring a z-type ligand: Promoting enyne cyclizations. Angew. Chem. Int. Ed. 2014;54:818–822. doi: 10.1002/anie.201408037. PubMed DOI
Appleton T.G., Clark H.C., Manzer L.E. The trans-influence: Its measurement and significance. Coord. Chem. Rev. 1973;10:335–422. doi: 10.1016/S0010-8545(00)80238-6. DOI
Usón R., Laguna A., Laguna M. (Tetrahydrothiophene) gold(I) or gold(III) complexes. Inorg. Synth. 1989;26:85–91. doi: 10.1002/9780470132579. DOI
Sheldrick G.M. Crystal structure refinement with SHELXL. Acta Crystallogr. Sect. C Struct. Chem. 2015;71:3–8. doi: 10.1107/S2053229614024218. PubMed DOI PMC
Sheldrick G.M. SHELXT–Integrated space-group and crystal-structure determination. Acta Crystallogr. Sect. A Found. Crystallogr. 2015;71:3–8. doi: 10.1107/S2053273314026370. PubMed DOI PMC
Spek A.L. Platon squeeze: A tool for the calculation of the disordered solvent contribution to the calculated structure factors. Acta Crystallogr. Sect. C Struct. Chem. 2015;71:9–18. doi: 10.1107/S2053229614024929. PubMed DOI
Spek A.L. Structure validation in chemical crystallography. Acta Crystallogr. Sect. D Biol. Crystallogr. 2009;65:148–155. doi: 10.1107/S090744490804362X. PubMed DOI PMC