Early platelet count kinetics has prognostic value in lower-risk myelodysplastic syndromes

. 2018 Aug 28 ; 2 (16) : 2079-2089.

Jazyk angličtina Země Spojené státy americké Médium print

Typ dokumentu klinické zkoušky, časopisecké články, multicentrická studie, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid30126931
Odkazy

PubMed 30126931
PubMed Central PMC6113605
DOI 10.1182/bloodadvances.2018020495
PII: bloodadvances.2018020495
Knihovny.cz E-zdroje

Prognosis of lower-risk (International Prognostic Scoring System [IPSS] low/intermediate-1) myelodysplastic syndrome (MDS) is heterogeneous and relies on steady-state assessment of cytopenias. We analyzed relative drops in neutrophil and platelet counts during the first 6 months of follow-up of lower-risk MDS patients. We performed a landmark analysis of overall survival (OS) of lower-risk MDS patients prospectively included in the European LeukaemiaNet MDS registry having a visit at 6 ± 1 month from inclusion to assess the prognostic relevance of relative drops in neutrophils and platelets, defined as (count at landmark - count at inclusion)/count at inclusion. Of 2102 patients, 807 were eligible for the stringent 6-month landmark analysis. Median age was 73 years. Revised IPSS was very low, low, and intermediate/higher in 26%, 43%, and 31% of patients, respectively. A relative drop in platelets >25% at landmark predicted shorter OS (5-year OS, 21.9% vs 48.6% with platelet drop ≤25%, P < 10-4), regardless of baseline IPSS-revised or absolute platelet counts. Relative neutrophil drop >25% had no significant impact on OS. We built a classifier based on red blood cell transfusion dependence (RBC-TD) and relative platelet drop >25% at landmark. Patients with none (62%), either (27%), or both criteria (11%) had 5-year OS of 53.3%, 32.7%, and 9.0%, respectively (P < 10-4). This classifier was validated in an independent cohort of 335 patients. Combining relative platelet drop >25% and RBC-TD at 6 months from diagnosis provides an inexpensive and noninvasive way to predict outcome in lower-risk MDS. This study was registered at www.clinicaltrials.gov as #NCT00600860.

Center of Hematology and Bone Marrow Transplantation Fundeni Clinical Institute Bucharest Romania

Centro de Investigación Biomédica en Red Cáncer Instituto Carlos 3 Madrid Spain

Clinic of Hematology Clinical Center of Vojvodina Faculty of Medicine University of Novi Sad Novi Sad Serbia

Département d'Hématologie Hôpital Saint Louis Assistance Publique des Hôpitaux de Paris and Université Paris Diderot Paris France

Department of Clinical Hematology Institute of Hematology and Blood Transfusion Praha Czech Republic

Department of Haematology Aarhus University Hospital Aarhus Denmark

Department of Haematology Aberdeen Royal Infirmary Aberdeen United Kingdom

Department of Haematology Oncology and Clinical Immunology Universitätsklinik Düsseldorf Düsseldorf Germany

Department of Haematology Oncology and Internal Medicine Warsaw Medical University Warsaw Poland

Department of Hematology Hospital da Luz Lisbon Portugal

Department of Hematology Hospital Universitario y Politécnico La Fe Valencia Spain

Department of Hematology Oncology Fondazione IRCCS Policlinico San Matteo University of Pavia Pavia Italy

Department of Hematology Radboud University Medical Center Nijmegen The Netherlands

Department of Internal Medicine 5 Innsbruck Medical University Innsbruck Austria

Department of Medicine A Tel Aviv Sourasky Medical Center Sackler Medical Faculty Tel Aviv University Tel Aviv Israel

Department of Tumor Immunology Nijmegen Center for Molecular Life Sciences Radboud University Medical Center Nijmegen The Netherlands

Division Hematology Department of Internal Medicine University of Patras Medical School Patras Greece

Division Hematology Department of Medicine Karolinska Institute Stockholm Sweden

Division of Hematology Department of Internal Medicine Merkur University Hospital Zagreb Croatia

Epidemiology and Cancer Statistics Group Department of Health Sciences University of York York United Kingdom

Service d'Hématologie Centre Hospitalier Universtaire Brabois Vandoeuvre Nancy France

Servicio d'Hematología Hospital Universitario Central de Asturias Oviedo Spain

St James's Institute of Oncology Leeds Teaching Hospitals Leeds United Kingdom; and

Zobrazit více v PubMed

Greenberg P, Cox C, LeBeau MM, et al. . International scoring system for evaluating prognosis in myelodysplastic syndromes. Blood. 1997;89(6):2079-2088. PubMed

Greenberg PL, Tuechler H, Schanz J, et al. . Revised international prognostic scoring system for myelodysplastic syndromes. Blood. 2012;120(12):2454-2465. PubMed PMC

Alhan C, Westers TM, Cremers EM, et al. . The myelodysplastic syndromes flow cytometric score: a three-parameter prognostic flow cytometric scoring system. Leukemia. 2016;30(3):658-665. PubMed

Bejar R, Stevenson KE, Caughey BA, et al. . Validation of a prognostic model and the impact of mutations in patients with lower-risk myelodysplastic syndromes. J Clin Oncol. 2012;30(27):3376-3382. PubMed PMC

Pellagatti A, Benner A, Mills KI, et al. . Identification of gene expression-based prognostic markers in the hematopoietic stem cells of patients with myelodysplastic syndromes. J Clin Oncol. 2013;31(28):3557-3564. PubMed

Malcovati L, Germing U, Kuendgen A, et al. . Time-dependent prognostic scoring system for predicting survival and leukemic evolution in myelodysplastic syndromes. J Clin Oncol. 2007;25(23):3503-3510. PubMed

Montillo M, Hamblin T, Hallek M, Montserrat E, Morra E. Chronic lymphocytic leukemia: novel prognostic factors and their relevance for risk-adapted therapeutic strategies. Haematologica. 2005;90(3):391-399. PubMed

Petrylak DP, Ankerst DP, Jiang CS, et al. . Evaluation of prostate-specific antigen declines for surrogacy in patients treated on SWOG 99-16. J Natl Cancer Inst. 2006;98(8):516-521. PubMed

de Swart L, Smith A, Johnston TW, et al. . Validation of the revised international prognostic scoring system (IPSS-R) in patients with lower-risk myelodysplastic syndromes: a report from the prospective European LeukaemiaNet MDS (EUMDS) registry. Br J Haematol. 2015;170(3):372-383. PubMed

Vardiman JW, Harris NL, Brunning RD. The World Health Organization (WHO) classification of the myeloid neoplasms. Blood. 2002;100(7):2292-2302. PubMed

de Swart L, Smith A, MacKenzie M, et al. . Cytomorphology review of 100 newly diagnosed lower-risk MDS patients in the European LeukemiaNet MDS (EUMDS) registry reveals a high inter-observer concordance. Ann Hematol. 2017;96(7):1105-1112. PubMed PMC

Malcovati L, Porta MG, Pascutto C, et al. . Prognostic factors and life expectancy in myelodysplastic syndromes classified according to WHO criteria: a basis for clinical decision making. J Clin Oncol. 2005;23(30):7594-7603. PubMed

Korn EL. Censoring distributions as a measure of follow-up in survival analysis. Stat Med. 1986;5(3):255-260. PubMed

Fine JP, Gray RJ. A proportional hazards model for the subdistribution of a competing risk. J Am Stat Assoc. 1999;94(446):496-509.

Akaike H. A new look at the statistical model identification. IEEE Trans Automat Contr. 1974;19(6):716-723.

Grambsch P, Louis TA, Bostick RM, et al. . Statistical analysis of proliferative index data in clinical trials. Stat Med. 1994;13(16):1619-1634. PubMed

O’Brien RM. A caution regarding rules of thumb for variance inflation factors. Qual Quant. 2007;41(5):673-690.

Friedman J, Hastie T, Tibshirani R. Regularization paths for generalized linear models via coordinate descent. J Stat Softw. 2010;33(1):1-22. PubMed PMC

Costongs GM, Janson PC, Bas BM, Hermans J, Brombacher PJ, van Wersch JW. Short-term and long-term intra-individual variations and critical differences of haematological laboratory parameters. J Clin Chem Clin Biochem. 1985;23(2):69-76. PubMed

Buckley MF, James JW, Brown DE, et al. . A novel approach to the assessment of variations in the human platelet count. Thromb Haemost. 2000;83(3):480-484. PubMed

Ross DW, Ayscue LH, Watson J, Bentley SA. Stability of hematologic parameters in healthy subjects. Intraindividual versus interindividual variation. Am J Clin Pathol. 1988;90(3):262-267. PubMed

Garcia-Manero G, Shan J, Faderl S, et al. . A prognostic score for patients with lower risk myelodysplastic syndrome. Leukemia. 2008;22(3):538-543. PubMed

Goldberg SL, Chen E, Corral M, et al. . Incidence and clinical complications of myelodysplastic syndromes among United States Medicare beneficiaries. J Clin Oncol. 2010;28(17):2847-2852. PubMed

Nachtkamp K, Stark R, Strupp C, et al. . Causes of death in 2877 patients with myelodysplastic syndromes. Ann Hematol. 2016;95(6):937-944. PubMed

Dayyani F, Conley AP, Strom SS, et al. . Cause of death in patients with lower-risk myelodysplastic syndrome. Cancer. 2010;116(9):2174-2179. PubMed PMC

Neukirchen J, Blum S, Kuendgen A, et al. . Platelet counts and haemorrhagic diathesis in patients with myelodysplastic syndromes. Eur J Haematol. 2009;83(5):477-482. PubMed

Sekeres MA, Maciejewski JP, Giagounidis AA, et al. . Relationship of treatment-related cytopenias and response to lenalidomide in patients with lower-risk myelodysplastic syndromes. J Clin Oncol. 2008;26(36):5943-5949. PubMed PMC

van der Helm LH, Alhan C, Wijermans PW, et al. . Platelet doubling after the first azacitidine cycle is a promising predictor for response in myelodysplastic syndromes (MDS), chronic myelomonocytic leukaemia (CMML) and acute myeloid leukaemia (AML) patients in the Dutch azacitidine compassionate named patient programme. Br J Haematol. 2011;155(5):599-606. PubMed

Zeidan AM, Lee JW, Prebet T, et al. . Platelet count doubling after the first cycle of azacitidine therapy predicts eventual response and survival in patients with myelodysplastic syndromes and oligoblastic acute myeloid leukaemia but does not add to prognostic utility of the revised IPSS. Br J Haematol. 2014;167(1):62-68. PubMed PMC

Pereira A, Nomdedeu M, Aguilar JL, et al. . Transfusion intensity, not the cumulative red blood cell transfusion burden, determines the prognosis of patients with myelodysplastic syndrome on chronic transfusion support. Am J Hematol. 2011;86(3):245-250. PubMed

Zhao R, Catalano P, DeGruttola VG, Michor F. Estimating mono- and bi-phasic regression parameters using a mixture piecewise linear Bayesian hierarchical model. PLoS One. 2017;12(7):e0180756. PubMed PMC

Ibrahim JG, Chu H, Chen LM. Basic concepts and methods for joint models of longitudinal and survival data. J Clin Oncol. 2010;28(16):2796-2801. PubMed PMC

Zobrazit více v PubMed

ClinicalTrials.gov
NCT00600860

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace