Early platelet count kinetics has prognostic value in lower-risk myelodysplastic syndromes
Jazyk angličtina Země Spojené státy americké Médium print
Typ dokumentu klinické zkoušky, časopisecké články, multicentrická studie, práce podpořená grantem
PubMed
30126931
PubMed Central
PMC6113605
DOI
10.1182/bloodadvances.2018020495
PII: bloodadvances.2018020495
Knihovny.cz E-zdroje
- MeSH
- lidé MeSH
- míra přežití MeSH
- myelodysplastické syndromy krev mortalita terapie MeSH
- počet trombocytů MeSH
- přežití bez známek nemoci MeSH
- registrace * MeSH
- rizikové faktory MeSH
- senioři MeSH
- trombocyty * MeSH
- Check Tag
- lidé MeSH
- mužské pohlaví MeSH
- senioři MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- klinické zkoušky MeSH
- multicentrická studie MeSH
- práce podpořená grantem MeSH
Prognosis of lower-risk (International Prognostic Scoring System [IPSS] low/intermediate-1) myelodysplastic syndrome (MDS) is heterogeneous and relies on steady-state assessment of cytopenias. We analyzed relative drops in neutrophil and platelet counts during the first 6 months of follow-up of lower-risk MDS patients. We performed a landmark analysis of overall survival (OS) of lower-risk MDS patients prospectively included in the European LeukaemiaNet MDS registry having a visit at 6 ± 1 month from inclusion to assess the prognostic relevance of relative drops in neutrophils and platelets, defined as (count at landmark - count at inclusion)/count at inclusion. Of 2102 patients, 807 were eligible for the stringent 6-month landmark analysis. Median age was 73 years. Revised IPSS was very low, low, and intermediate/higher in 26%, 43%, and 31% of patients, respectively. A relative drop in platelets >25% at landmark predicted shorter OS (5-year OS, 21.9% vs 48.6% with platelet drop ≤25%, P < 10-4), regardless of baseline IPSS-revised or absolute platelet counts. Relative neutrophil drop >25% had no significant impact on OS. We built a classifier based on red blood cell transfusion dependence (RBC-TD) and relative platelet drop >25% at landmark. Patients with none (62%), either (27%), or both criteria (11%) had 5-year OS of 53.3%, 32.7%, and 9.0%, respectively (P < 10-4). This classifier was validated in an independent cohort of 335 patients. Combining relative platelet drop >25% and RBC-TD at 6 months from diagnosis provides an inexpensive and noninvasive way to predict outcome in lower-risk MDS. This study was registered at www.clinicaltrials.gov as #NCT00600860.
Center of Hematology and Bone Marrow Transplantation Fundeni Clinical Institute Bucharest Romania
Centro de Investigación Biomédica en Red Cáncer Instituto Carlos 3 Madrid Spain
Department of Clinical Hematology Institute of Hematology and Blood Transfusion Praha Czech Republic
Department of Haematology Aarhus University Hospital Aarhus Denmark
Department of Haematology Aberdeen Royal Infirmary Aberdeen United Kingdom
Department of Haematology Oncology and Internal Medicine Warsaw Medical University Warsaw Poland
Department of Hematology Hospital da Luz Lisbon Portugal
Department of Hematology Hospital Universitario y Politécnico La Fe Valencia Spain
Department of Hematology Radboud University Medical Center Nijmegen The Netherlands
Department of Internal Medicine 5 Innsbruck Medical University Innsbruck Austria
Division Hematology Department of Medicine Karolinska Institute Stockholm Sweden
Division of Hematology Department of Internal Medicine Merkur University Hospital Zagreb Croatia
Service d'Hématologie Centre Hospitalier Universtaire Brabois Vandoeuvre Nancy France
Servicio d'Hematología Hospital Universitario Central de Asturias Oviedo Spain
St James's Institute of Oncology Leeds Teaching Hospitals Leeds United Kingdom; and
Zobrazit více v PubMed
Greenberg P, Cox C, LeBeau MM, et al. . International scoring system for evaluating prognosis in myelodysplastic syndromes. Blood. 1997;89(6):2079-2088. PubMed
Greenberg PL, Tuechler H, Schanz J, et al. . Revised international prognostic scoring system for myelodysplastic syndromes. Blood. 2012;120(12):2454-2465. PubMed PMC
Alhan C, Westers TM, Cremers EM, et al. . The myelodysplastic syndromes flow cytometric score: a three-parameter prognostic flow cytometric scoring system. Leukemia. 2016;30(3):658-665. PubMed
Bejar R, Stevenson KE, Caughey BA, et al. . Validation of a prognostic model and the impact of mutations in patients with lower-risk myelodysplastic syndromes. J Clin Oncol. 2012;30(27):3376-3382. PubMed PMC
Pellagatti A, Benner A, Mills KI, et al. . Identification of gene expression-based prognostic markers in the hematopoietic stem cells of patients with myelodysplastic syndromes. J Clin Oncol. 2013;31(28):3557-3564. PubMed
Malcovati L, Germing U, Kuendgen A, et al. . Time-dependent prognostic scoring system for predicting survival and leukemic evolution in myelodysplastic syndromes. J Clin Oncol. 2007;25(23):3503-3510. PubMed
Montillo M, Hamblin T, Hallek M, Montserrat E, Morra E. Chronic lymphocytic leukemia: novel prognostic factors and their relevance for risk-adapted therapeutic strategies. Haematologica. 2005;90(3):391-399. PubMed
Petrylak DP, Ankerst DP, Jiang CS, et al. . Evaluation of prostate-specific antigen declines for surrogacy in patients treated on SWOG 99-16. J Natl Cancer Inst. 2006;98(8):516-521. PubMed
de Swart L, Smith A, Johnston TW, et al. . Validation of the revised international prognostic scoring system (IPSS-R) in patients with lower-risk myelodysplastic syndromes: a report from the prospective European LeukaemiaNet MDS (EUMDS) registry. Br J Haematol. 2015;170(3):372-383. PubMed
Vardiman JW, Harris NL, Brunning RD. The World Health Organization (WHO) classification of the myeloid neoplasms. Blood. 2002;100(7):2292-2302. PubMed
de Swart L, Smith A, MacKenzie M, et al. . Cytomorphology review of 100 newly diagnosed lower-risk MDS patients in the European LeukemiaNet MDS (EUMDS) registry reveals a high inter-observer concordance. Ann Hematol. 2017;96(7):1105-1112. PubMed PMC
Malcovati L, Porta MG, Pascutto C, et al. . Prognostic factors and life expectancy in myelodysplastic syndromes classified according to WHO criteria: a basis for clinical decision making. J Clin Oncol. 2005;23(30):7594-7603. PubMed
Korn EL. Censoring distributions as a measure of follow-up in survival analysis. Stat Med. 1986;5(3):255-260. PubMed
Fine JP, Gray RJ. A proportional hazards model for the subdistribution of a competing risk. J Am Stat Assoc. 1999;94(446):496-509.
Akaike H. A new look at the statistical model identification. IEEE Trans Automat Contr. 1974;19(6):716-723.
Grambsch P, Louis TA, Bostick RM, et al. . Statistical analysis of proliferative index data in clinical trials. Stat Med. 1994;13(16):1619-1634. PubMed
O’Brien RM. A caution regarding rules of thumb for variance inflation factors. Qual Quant. 2007;41(5):673-690.
Friedman J, Hastie T, Tibshirani R. Regularization paths for generalized linear models via coordinate descent. J Stat Softw. 2010;33(1):1-22. PubMed PMC
Costongs GM, Janson PC, Bas BM, Hermans J, Brombacher PJ, van Wersch JW. Short-term and long-term intra-individual variations and critical differences of haematological laboratory parameters. J Clin Chem Clin Biochem. 1985;23(2):69-76. PubMed
Buckley MF, James JW, Brown DE, et al. . A novel approach to the assessment of variations in the human platelet count. Thromb Haemost. 2000;83(3):480-484. PubMed
Ross DW, Ayscue LH, Watson J, Bentley SA. Stability of hematologic parameters in healthy subjects. Intraindividual versus interindividual variation. Am J Clin Pathol. 1988;90(3):262-267. PubMed
Garcia-Manero G, Shan J, Faderl S, et al. . A prognostic score for patients with lower risk myelodysplastic syndrome. Leukemia. 2008;22(3):538-543. PubMed
Goldberg SL, Chen E, Corral M, et al. . Incidence and clinical complications of myelodysplastic syndromes among United States Medicare beneficiaries. J Clin Oncol. 2010;28(17):2847-2852. PubMed
Nachtkamp K, Stark R, Strupp C, et al. . Causes of death in 2877 patients with myelodysplastic syndromes. Ann Hematol. 2016;95(6):937-944. PubMed
Dayyani F, Conley AP, Strom SS, et al. . Cause of death in patients with lower-risk myelodysplastic syndrome. Cancer. 2010;116(9):2174-2179. PubMed PMC
Neukirchen J, Blum S, Kuendgen A, et al. . Platelet counts and haemorrhagic diathesis in patients with myelodysplastic syndromes. Eur J Haematol. 2009;83(5):477-482. PubMed
Sekeres MA, Maciejewski JP, Giagounidis AA, et al. . Relationship of treatment-related cytopenias and response to lenalidomide in patients with lower-risk myelodysplastic syndromes. J Clin Oncol. 2008;26(36):5943-5949. PubMed PMC
van der Helm LH, Alhan C, Wijermans PW, et al. . Platelet doubling after the first azacitidine cycle is a promising predictor for response in myelodysplastic syndromes (MDS), chronic myelomonocytic leukaemia (CMML) and acute myeloid leukaemia (AML) patients in the Dutch azacitidine compassionate named patient programme. Br J Haematol. 2011;155(5):599-606. PubMed
Zeidan AM, Lee JW, Prebet T, et al. . Platelet count doubling after the first cycle of azacitidine therapy predicts eventual response and survival in patients with myelodysplastic syndromes and oligoblastic acute myeloid leukaemia but does not add to prognostic utility of the revised IPSS. Br J Haematol. 2014;167(1):62-68. PubMed PMC
Pereira A, Nomdedeu M, Aguilar JL, et al. . Transfusion intensity, not the cumulative red blood cell transfusion burden, determines the prognosis of patients with myelodysplastic syndrome on chronic transfusion support. Am J Hematol. 2011;86(3):245-250. PubMed
Zhao R, Catalano P, DeGruttola VG, Michor F. Estimating mono- and bi-phasic regression parameters using a mixture piecewise linear Bayesian hierarchical model. PLoS One. 2017;12(7):e0180756. PubMed PMC
Ibrahim JG, Chu H, Chen LM. Basic concepts and methods for joint models of longitudinal and survival data. J Clin Oncol. 2010;28(16):2796-2801. PubMed PMC
ClinicalTrials.gov
NCT00600860