Somatic mutations and DNA methylation identify a subgroup of poor prognosis within lower-risk myelodysplastic syndromes

. 2025 Jan ; 9 (1) : e70073. [epub] 20250122

Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid39850648

Lower risk (LR) myelodysplastic syndromes (MDS) are heterogeneous hematopoietic stem and progenitor disorders caused by the accumulation of somatic mutations in various genes including epigenetic regulators that may produce convergent DNA methylation patterns driving specific gene expression profiles. The integration of genomic, epigenomic, and transcriptomic profiling has the potential to spotlight distinct LR-MDS categories on the basis of pathophysiological mechanisms. We performed a comprehensive study of somatic mutations and DNA methylation in a large and clinically well-annotated cohort of treatment-naive patients with LR-MDS at diagnosis from the EUMDS registry (ClinicalTrials.gov.NCT00600860). Unsupervised clustering analyses identified six clusters based on genetic profiling that concentrate into four clusters on the basis of genome-wide methylation profiling with significant overlap between the two clustering modes. The four methylation clusters showed distinct clinical and genetic features and distinct methylation landscape. All clusters shared hypermethylated enhancers enriched in binding motifs for ETS and bZIP (C/EBP) transcription factor families, involved in the regulation of myeloid cell differentiation. By contrast, one cluster gathering patients with early leukemic evolution exhibited a specific pattern of hypermethylated promoters and, distinctly from other clusters, the upregulation of AP-1 complex members FOS/FOSL2 together with the absence of hypermethylation of their binding motif at target gene enhancers, which is of relevance for leukemic initiation. Among MDS patients with lower-risk IPSS-M, this cluster displayed a significantly inferior overall survival (p < 0.0001). Our study showed that genetic and DNA methylation features of LR-MDS at early stages may refine risk stratification, therefore offering the frame for a precocious therapeutic intervention.

Center for Hematology and Regenerative Medicine Department of Medicine Huddinge Karolinska Institute Karolinska University Hospital Stockholm Sweden

Clinic of Hematology Clinical Center of Vojvodina Faculty of Medicine University of Novi Sad Novi Sad Serbia

Department of Biosciences and Nutrition Karolinska Institute Stockholm Sweden

Department of Clinical Hematology Institute of Hematology and Blood Transfusion Prague Czech Republic

Department of Computational Biology Institut Gustave Roussy INSERM U981 Villejuif France

Department of Hematology Amsterdam UMC Cancer Center Amsterdam Amsterdam The Netherlands

Department of Hematology Oncology and Clinical Immunology Heinrich Heine University Medical Faculty Düsseldorf Germany

Department of Hematology Radboud University Medical Center Nijmegen The Netherlands

Department of Hematology Université de Grenoble Alpes CHU Grenoble France

Department of Internal Medicine 5 Comprehensive Cancer Center Innsbruck Medical University of Innsbruck Innsbruck Austria

Department of Laboratory Medicine Laboratory of Hematology Radboud University Medical Center Nijmegen The Netherlands

Department of Molecular Biology Faculty of Science Radboud University Nijmegen The Netherlands

Department of Molecular Medicine and Department of Hematology Oncology University of Pavia and Fondazione IRCCS Policlinico S Matteo Pavia Italy

Department of Tumor Immunology Radboud Institute of Molecular Life Sciences Radboud University Medical Center Nijmegen The Netherlands

Epidemiology and Cancer Statistics Group Department of Health Sciences University of York York UK

Hematology Division Department of Internal Medicine University of Patras Patras Greece

Institute of Medical Informatics University of Heidelberg Heidelberg Germany

Institute of Medical Informatics University of Münster Münster Germany

Laboratoire d'hématologie Centre Hospitalier Régional Universitaire Lille France

Service d'Hématologie Clinique University Hospital of Nancy and University of Lorraine Nancy France

Service d'onco hématologie Centre Hospitalier Général d'Avignon Avignon France

St James's Institute of Oncology Leeds Teaching Hospitals Leeds UK

Université Paris Cité Assistance Publique des Hôpitaux de Paris Nord Laboratoire d'Hématologie Hôpital Saint Louis Paris France

Université Paris Cité Assistance Publique des Hôpitaux de Paris Nord Service d'Hématologie Senior Hôpital Saint Louis Paris France

Université Paris Cité Institut Cochin INSERM U1016 CNRS UMR8104 Assistance Publique Hôpitaux de Paris Centre Laboratory of Hematology Hôpital Cochin Paris France

Zobrazit více v PubMed

de Swart L, Smith A, Johnston TW, et al. Validation of the revised international prognostic scoring system (IPSS‐R) in patients with lower‐risk myelodysplastic syndromes: a report from the prospective European LeukaemiaNet MDS (EUMDS) registry. Br J Haematol. 2015;170(3):372‐383. 10.1111/bjh.13450 PubMed DOI

Malcovati L, Hellström‐Lindberg E, Bowen D, et al. Diagnosis and treatment of primary myelodysplastic syndromes in adults: recommendations from the European LeukemiaNet. Blood. 2013;122(17):2943‐2964. 10.1182/blood-2013-03-492884 PubMed DOI PMC

de Witte T, Bowen D, Robin M, et al. Allogeneic hematopoietic stem cell transplantation for MDS and CMML: recommendations from an international expert panel. Blood. 2017;129(13):1753‐1762. 10.1182/blood-2016-06-724500 PubMed DOI PMC

Stojkov K, Silzle T, Stussi G, et al. Guideline‐based indicators for adult patients with myelodysplastic syndromes. Blood Adv. 2020;4(16):4029‐4044. 10.1182/bloodadvances.2020002314 PubMed DOI PMC

Itzykson R, Crouch S, Travaglino E, et al. Early platelet count kinetics has prognostic value in lower‐risk myelodysplastic syndromes. Blood Adv. 2018;2(16):2079‐2089. 10.1182/bloodadvances.2018020495 PubMed DOI PMC

Hoeks M, Bagguley T, van Marrewijk C, et al. Toxic iron species in lower‐risk myelodysplastic syndrome patients: course of disease and effects on outcome. Leukemia. 2021;35(6):1745‐1750. 10.1038/s41375-020-01022-2 PubMed DOI PMC

De Witte T, Malcovati L, Fenaux P, et al. Novel dynamic outcome indicators and clinical endpoints in myelodysplastic syndrome; the European LeukemiaNet MDS Registry and MDS‐RIGHT project perspective. Haematologica. 2020;105(11):2516‐2523. 10.3324/haematol.2020.266817 PubMed DOI PMC

Stauder R, Yu G, Koinig KA, et al. Health‐related quality of life in lower‐risk MDS patients compared with age‐ and sex‐matched reference populations: a European LeukemiaNet study. Leukemia. 2018;32(6):1380‐1392. 10.1038/s41375-018-0089-x PubMed DOI PMC

Garelius HKG, Johnston WT, Smith AG, et al. Erythropoiesis‐stimulating agents significantly delay the onset of a regular transfusion need in nontransfused patients with lower‐risk myelodysplastic syndrome. J Intern Med. 2017;281(3):284‐299. 10.1111/joim.12579 PubMed DOI PMC

Delhommeau F, Dupont S, Valle VD, et al. Mutation in TET2 in myeloid cancers. N Engl J Med. 2009;360(22):2289‐2301. 10.1056/NEJMoa0810069 PubMed DOI

Langemeijer SMC, Kuiper RP, Berends M, et al. Acquired mutations in TET2 are common in myelodysplastic syndromes. Nat Genet. 2009;41(7):838‐842. 10.1038/ng.391 PubMed DOI

Papaemmanuil E, Cazzola M, Boultwood J, et al. Somatic SF3B1 mutation in myelodysplasia with ring sideroblasts. N Engl J Med. 2011;365(15):1384‐1395. 10.1056/NEJMoa1103283 PubMed DOI PMC

Yoshida K, Sanada M, Shiraishi Y, et al. Frequent pathway mutations of splicing machinery in myelodysplasia. Nature. 2011;478(7367):64‐69. 10.1038/nature10496 PubMed DOI

Papaemmanuil E, Gerstung M, Malcovati L, et al. Clinical and biological implications of driver mutations in myelodysplastic syndromes. Blood. 2013;122(22):3616‐3627. 10.1182/blood-2013-08-518886 PubMed DOI PMC

Haferlach T, Nagata Y, Grossmann V, et al. Landscape of genetic lesions in 944 patients with myelodysplastic syndromes. Leukemia. 2014;28(2):241‐247. 10.1038/leu.2013.336 PubMed DOI PMC

Gallì A, Todisco G, Catamo E, et al. Relationship between clone metrics and clinical outcome in clonal cytopenia. Blood. 2021;138(11):965‐976. 10.1182/blood.2021011323 PubMed DOI

Malcovati L, Karimi M, Papaemmanuil E, et al. SF3B1 mutation identifies a distinct subset of myelodysplastic syndrome with ring sideroblasts. Blood. 2015;126(2):233‐241. 10.1182/blood-2015-03-633537 PubMed DOI PMC

Arber DA, Orazi A, Hasserjian RP, et al. International Consensus Classification of Myeloid Neoplasms and Acute Leukemias: integrating morphologic, clinical, and genomic data. Blood. 2022;140(11):1200‐1228. 10.1182/blood.2022015850 PubMed DOI PMC

Khoury JD, Solary E, Abla O, et al. The 5th edition of the World Health Organization classification of haematolymphoid tumours: myeloid and histiocytic/dendritic neoplasms. Leukemia. 2022;36(7):1703‐1719. 10.1038/s41375-022-01613-1 PubMed DOI PMC

Bernard E, Nannya Y, Hasserjian RP, et al. Implications of TP53 allelic state for genome stability, clinical presentation and outcomes in myelodysplastic syndromes. Nature Med. 2020;26(10):1549‐1556. 10.1038/s41591-020-1008-z PubMed DOI PMC

Duncavage EJ, Bagg A, Hasserjian RP, et al. Genomic profiling for clinical decision making in myeloid neoplasms and acute leukemia. Blood. 2022;140(21):2228‐2247. 10.1182/blood.2022015853 PubMed DOI PMC

Gelsi‐Boyer V, Trouplin V, Adélaïde J, et al. Mutations of polycomb‐associated gene ASXL1 in myelodysplastic syndromes and chronic myelomonocytic leukaemia. Br J Haematol. 2009;145(6):788‐800. 10.1111/j.1365-2141.2009.07697.x PubMed DOI

Ernst T, Chase AJ, Score J, et al. Inactivating mutations of the histone methyltransferase gene EZH2 in myeloid disorders. Nat Genet. 2010;42(8):722‐726. 10.1038/ng.621 PubMed DOI

Rasmussen KD, Jia G, Johansen JV, et al. Loss of TET2 in hematopoietic cells leads to DNA hypermethylation of active enhancers and induction of leukemogenesis. Genes Dev. 2015;29(9):910‐922. 10.1101/gad.260174.115 PubMed DOI PMC

Jiang Y, Dunbar A, Gondek LP, et al. Aberrant DNA methylation is a dominant mechanism in MDS progression to AML. Blood. 2009;113(6):1315‐1325. 10.1182/blood-2008-06-163246 PubMed DOI PMC

Figueroa ME, Skrabanek L, Li Y, et al. MDS and secondary AML display unique patterns and abundance of aberrant DNA methylation. Blood. 2009;114(16):3448‐3458. 10.1182/blood-2009-01-200519 PubMed DOI PMC

Shen L, Kantarjian H, Guo Y, et al. DNA methylation predicts survival and response to therapy in patients with myelodysplastic syndromes. J Clin Oncol. 2010;28(4):605‐613. 10.1200/JCO.2009.23.4781 PubMed DOI PMC

Qin T, Sotzen J, Rampal RK, et al. Risk of disease progression in low‐risk MDS is linked to distinct epigenetic subtypes. Leukemia. 2019;33(11):2753‐2757. 10.1038/s41375-019-0518-5 PubMed DOI PMC

Itzykson R, Kosmider O, Cluzeau T, et al. Groupe Francophone des Myelodysplasies (GFM) . Impact of TET2 mutations on response rate to azacitidine in myelodysplastic syndromes and low blast count acute myeloid leukemias. Leukemia. 2011;25(7):1147‐1152. 10.1038/leu.2011.71 PubMed DOI

Bejar R, Lord A, Stevenson K, et al. TET2 mutations predict response to hypomethylating agents in myelodysplastic syndrome patients. Blood. 2014;124(17):2705‐2712. 10.1182/blood-2014-06-582809 PubMed DOI PMC

Beauchamp EM, Leventhal M, Bernard E, et al. ZBTB33 is mutated in clonal hematopoiesis and myelodysplastic syndromes and impacts RNA splicing. Blood Cancer Discovery. 2021;2(5):500‐517. 10.1158/2643-3230.BCD-20-0224 PubMed DOI PMC

Bernard E, Tuechler H, Greenberg PL, et al. Molecular international prognostic scoring system for myelodysplastic syndromes. NEJM Evid. 2022;1(7):EVIDo a2200008. 10.1056/EVIDoa2200008 PubMed DOI

Sandmann S, Karimi M, de Graaf AO, et al. appreci8: a pipeline for precise variant calling integrating 8 tools. Bioinformatics. 2018;34(24):4205‐4212. 10.1093/bioinformatics/bty518 PubMed DOI PMC

Bizet M, Defrance M, Calonne E, et al. Improving Infinium MethylationEPIC data processing: re‐annotation of enhancers and long noncoding RNA genes and benchmarking of normalization methods. Epigenetics. 2022;17(13):2434‐2454. 10.1080/15592294.2022.2135201 PubMed DOI PMC

Newman AM, Steen CB, Liu CL, et al. Determining cell type abundance and expression from bulk tissues with digital cytometry. Nat Biotechnol. 2019;37(7):773‐782. 10.1038/s41587-019-0114-2 PubMed DOI PMC

Pellin D, Loperfido M, Baricordi C, et al. A comprehensive single cell transcriptional landscape of human hematopoietic progenitors. Nat Commun. 2019;10(1):2395. 10.1038/s41467-019-10291-0 PubMed DOI PMC

Kelley LA, Gardner SP, Sutcliffe MJ. An automated approach for clustering an ensemble of NMR‐derived protein structures into conformationally‐related subfamilies. Protein Eng Des Select. 1996;9(11):1063‐1065. 10.1093/protein/9.11.1063 PubMed DOI

Todisco G, Creignou M, Bernard E, et al. Integrated genomic and transcriptomic analysis improves disease classification and risk stratification of MDS with ring sideroblasts. Clin Cancer Res. 2023;29(20):4256‐4267. 10.1158/1078-0432.CCR-23-0538 PubMed DOI PMC

Assi SA, Imperato MR, Coleman DJL, et al. Subtype‐specific regulatory network rewiring in acute myeloid leukemia. Nat Genet. 2019;51(1):151‐162. 10.1038/s41588-018-0270-1 PubMed DOI PMC

Bersanelli M, Travaglino E, Meggendorfer M, et al. Classification and Personalized Prognostic assessment on the basis of clinical and genomic features in myelodysplastic syndromes. J Clin Oncol. 2021;39(11):1223‐1233. 10.1200/JCO.20.01659 PubMed DOI PMC

Todisco G, Creignou M, Gallì A, et al. Co‐mutation pattern, clonal hierarchy, and clone size concur to determine disease phenotype of SRSF2P95‐mutated neoplasms. Leukemia. 2021;35(8):2371‐2381. 10.1038/s41375-020-01106-z PubMed DOI

Droin N, Jacquel A, Hendra JB, et al. Alpha‐defensins secreted by dysplastic granulocytes inhibit the differentiation of monocytes in chronic myelomonocytic leukemia. Blood. 2010;115(1):78‐88. 10.1182/blood-2009-05-224352 PubMed DOI

Zhao LP, Boy M, Azoulay C, et al. Genomic landscape of MDS/CMML associated with systemic inflammatory and autoimmune disease. Leukemia. 2021;35(9):2720‐2724. 10.1038/s41375-021-01152-1 PubMed DOI

Zhou J, Zhang T, Xu Z, et al. Genome‐wide methylation sequencing identifies progression‐related epigenetic drivers in myelodysplastic syndromes. Cell Death Dis. 2020;11(11):997. 10.1038/s41419-020-03213-2 PubMed DOI PMC

Glass JL, Hassane D, Wouters BJ, et al., Epigenetic Identity in AML depends on disruption of nonpromoter regulatory elements and is affected by antagonistic effects of mutations in epigenetic modifiers. Cancer Discovery. 2017;7(8):868‐883. 10.1158/2159-8290.CD-16-1032 PubMed DOI PMC

Reilly B, Tanaka TN, Diep D, et al. DNA methylation identifies genetically and prognostically distinct subtypes of myelodysplastic syndromes. Blood Adv. 2019;3(19):2845‐2858. 10.1182/bloodadvances.2019000192 PubMed DOI PMC

Siamoglou S, Boers R, Koromina M, et al. Genome‐wide analysis toward the epigenetic aetiology of myelodysplastic syndrome disease progression and pharmacoepigenomic basis of hypomethylating agents drug treatment response. Hum Genomics. 2023;17(1):37. 10.1186/s40246-023-00483-7 PubMed DOI PMC

Merlevede J, Droin N, Qin T, et al. Mutation allele burden remains unchanged in chronic myelomonocytic leukaemia responding to hypomethylating agents. Nat Commun. 2016;7:10767. 10.1038/ncomms10767 PubMed DOI PMC

Tulstrup M, Soerensen M, Hansen JW, et al. TET2 mutations are associated with hypermethylation at key regulatory enhancers in normal and malignant hematopoiesis. Nat Commun. 2021;12(1):6061. 10.1038/s41467-021-26093-2 PubMed DOI PMC

Yoshimi A, Lin KT, Wiseman DH, et al. Coordinated alterations in RNA splicing and epigenetic regulation drive leukaemogenesis. Nature. 2019;574(7777):273‐277. 10.1038/s41586-019-1618-0 PubMed DOI PMC

Zobrazit více v PubMed

ClinicalTrials.gov
NCT00600860

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...