Synthesis, Bacteriostatic and Anticancer Activity of Novel Phenanthridines Structurally Similar to Benzo[c]phenanthridine Alkaloids
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
PubMed
30150591
PubMed Central
PMC6225299
DOI
10.3390/molecules23092155
PII: molecules23092155
Knihovny.cz E-zdroje
- Klíčová slova
- antibacterial activity, antiproliferative, benzo[c]phenanthridines, phenanthridines, radical cyclization,
- MeSH
- antibakteriální látky chemická syntéza chemie farmakologie MeSH
- Bacteria účinky léků MeSH
- fenantridiny chemická syntéza chemie farmakologie MeSH
- kontrolní body buněčného cyklu účinky léků MeSH
- lidé MeSH
- mikrobiální testy citlivosti MeSH
- molekulární struktura MeSH
- nádorové buněčné linie MeSH
- proliferace buněk účinky léků MeSH
- protinádorové látky chemická syntéza chemie farmakologie MeSH
- techniky syntetické chemie MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- antibakteriální látky MeSH
- fenantridiny MeSH
- protinádorové látky MeSH
In this study, we report the synthesis, antibacterial and anticancer evaluation of 38 novel phenanthridines that were designed as analogs of the benzo[c]phenanthridine alkaloids. The prepared phenanthridines differ from the benzo[c]phenanthridines in the absence of a benzene A-ring. All novel compounds were prepared from 6-bromo-2-hydroxy-3-methoxybenzaldehyde in several synthetic steps through reduction of Schiff bases and accomplished by radical cyclization. Twelve derivatives showed high antibacterial activity against Bacillussubtilis, Micrococcusluteus and/or Mycobacteriumvaccae at single digit micromolar concentrations. Some compounds also displayed cytotoxicity against the K-562 and MCF-7 cancer cell lines at as low as single digit micromolar concentrations and were more potent than chelerythrine and sanguinarine. The active compounds caused cell-cycle arrest in cancer cells, increased levels of p53 protein and caused apoptosis-specific fragmentation of PARP-1. Biological activity was connected especially with the presence of the N-methyl quaternary nitrogen and 7-benzyloxy substitution (compounds 7i, 7j, 7k, and 7l) of phenanthridine.
Zobrazit více v PubMed
Dvořák Z., Kubán V., Klejdus B., Vičar J., Ulrichová J., Hlaváč J., Šimánek V. Quaternary benzo[c]phenanthridines sanguinarine and chelerythrine: A review of investigations from chemical and biological studies. Heterocycles. 2006;68:2403. doi: 10.3987/REV-06-610. DOI
Ahsan H., Reagan-Shaw S., Breur J., Ahmad N. Sanguinarine induces apoptosis of human pancreatic carcinoma AsPC-1 and BxPC-3 cells via modulations in Bcl-2 family proteins. Cancer Lett. 2007;249:198–208. doi: 10.1016/j.canlet.2006.08.018. PubMed DOI
Jang B.-C., Park J.-G., Song D.-K., Baek W.-K., Yoo S.K., Jung K.-H., Park G.-Y., Lee T.-Y., Suh S.-I. Sanguinarine induces apoptosis in A549 human lung cancer cells primarily via cellular glutathione depletion. Toxicol. Vitro. 2009;23:281–287. doi: 10.1016/j.tiv.2008.12.013. PubMed DOI
Miao F., Yang X.-J., Zhou L., Hu H.-J., Zheng F., Ding X.-D., Sun D.-M., Zhou C.-D., Sun W. Structural modification of sanguinarine and chelerythrine and their antibacterial activity. Nat. Prod. Res. 2011;25:863–875. doi: 10.1080/14786419.2010.482055. PubMed DOI
Ishikawa T. Benzo[c]phenanthridine bases and their antituberculosis activity. Med. Res. Rev. 2001;21:61–72. doi: 10.1002/1098-1128(200101)21:1<61::AID-MED2>3.0.CO;2-F. PubMed DOI
Šimánek V. Benzophenanthridine alkaloids. In: Brossi A., editor. The Alkaloids. Volume 26. Academic Press; New York, NY, USA: 1985. pp. 185–240.
Galadari S., Rahman A., Pallichankandy S., Thayyullathil F. Molecular targets and anticancer potential of sanguinarine—A benzophenanthridine alkaloid. Phytomedicine. 2017;34:143–153. doi: 10.1016/j.phymed.2017.08.006. PubMed DOI
Slaninová I., Pěnčíková K., Urbanová J., Slanina J., Táborská E. Antitumour activities of sanguinarine and related alkaloids. Phytochem. Rev. 2014;13:51–68. doi: 10.1007/s11101-013-9290-8. DOI
Maiti M., Nandi R., Chaudhuri K. Sanguinarine: A monofunctional intercalating alkaloid. FEBS Lett. 1982;142:280–284. doi: 10.1016/0014-5793(82)80152-X. PubMed DOI
Wang X., Tanaka M., Krstin S., Peixoto H., Wink M. The interference of selected cytotoxic alkaloids with the cytoskeleton: An insight into their modes of action. Molecules. 2016;21:906. doi: 10.3390/molecules21070906. PubMed DOI PMC
Chan S.-L., Lee M.C., Tan K.O., Yang L.-K., Lee A.S.Y., Flotow H., Fu N.Y., Butler M.S., Soejarto D.D., Buss A.D., et al. Identification of chelerythrine as an inhibitor of BclXL function. J. Biol. Chem. 2003;278:20453–20456. doi: 10.1074/jbc.C300138200. PubMed DOI
Caolo M.A., Stermitz F.R. Benzophenanthridinium salt equilibria. Heterocycles. 1979;12:11. doi: 10.3987/R-1979-01-0011. DOI
Romo-Pérez A., Miranda L.D., Chávez-Blanco A.D., Dueñas-González A., del Rayo Camacho-Corona M., Acosta-Huerta A., García A. Mild C(sp3)–H functionalization of dihydrosanguinarine and dihydrochelerythrine for development of highly cytotoxic derivatives. Eur. J. Med. Chem. 2017;138:1–12. doi: 10.1016/j.ejmech.2017.06.021. PubMed DOI
Zee-Cheng R.K.Y., Yan S.-J., Cheng C.C. Antileukemic activity of ungeremine and related compounds. Preparation of analogs of ungeremine by a practical photochemical reaction. J. Med. Chem. 1978;21:199–203. doi: 10.1021/jm00200a011. PubMed DOI
Hatae N., Fujita E., Shigenobu S., Shimoyama S., Ishihara Y., Kurata Y., Choshi T., Nishiyama T., Okada C., Hibino S. Antiproliferative activity of O4-benzo[c]phenanthridine alkaloids against HCT-116 and HL-60 tumor cells. Bioorg. Med. Chem. Lett. 2015;25:2749–2752. doi: 10.1016/j.bmcl.2015.05.031. PubMed DOI
Nakanishi T., Suzuki M., Mashiba A., Ishikawa K., Yokotsuka T. Synthesis of NK109, an anticancer benzo[c]phenanthridine alkaloid. J. Org. Chem. 1998;63:4235–4239. doi: 10.1021/jo9718758. DOI
Kanzawa F., Nishio K., Ishida T., Fukuda M., Kurokawa H., Fukumoto H., Nomoto Y., Fukuoka K., Bojanowski K., Saijo N. Anti-tumour activities of a new benzo[c]phenanthridine agent, 2,3-(methylenedioxy)-5-methyl-7-hydroxy-8-methoxybenzo[c]phenanthridinium hydrogensulphate dihydrate (NK109), against several drug-resistant human tumour cell lines. Br. J. Cancer. 1997;76:571–581. doi: 10.1038/bjc.1997.428. PubMed DOI PMC
Nakanishi T., Masuda A., Suwa M., Akiyama Y., Hoshino-Abe N., Suzuki M. Synthesis of derivatives of NK109, 7-OH Benzo[c]phenanthridine alkaloid, and evaluation of their cytotoxicities and reduction-resistant properties. Bioorg. Med. Chem. Lett. 2000;10:2321–2323. doi: 10.1016/S0960-894X(00)00467-4. PubMed DOI
Fukuda M., Inomata M., Nishio K., Fukuoka K., Kanzawa F., Arioka H., Ishida T., Fukumoto H., Kurokawa H., Oka M., et al. A Topoisomerase II inhibitor, NK109, induces DNA single- and double-strand breaks and apoptosis. Jpn. J. Cancer Res. 1996;87:1086–1091. doi: 10.1111/j.1349-7006.1996.tb03114.x. PubMed DOI PMC
Hisatomi T., Sueoka-Aragane N., Sato A., Tomimasu R., Ide M., Kurimasa A., Okamoto K., Kimura S., Sueoka E. NK314 potentiates antitumor activity with adult T-cell leukemia-lymphoma cells by inhibition of dual targets on topoisomerase II and DNA-dependent protein kinase. Blood. 2011;117:3575–3584. doi: 10.1182/blood-2010-02-270439. PubMed DOI
Toyoda E., Kagaya S., Cowell I.G., Kurosawa A., Kamoshita K., Nishikawa K., Iiizumi S., Koyama H., Austin C.A., Adachi N. NK314, a topoisomerase II inhibitor that specifically targets the α isoform. J. Biol. Chem. 2008;283:23711–23720. doi: 10.1074/jbc.M803936200. PubMed DOI PMC
Guo L., Liu X., Nishikawa K., Plunkett W. Inhibition of topoisomerase II and G2 cell cycle arrest by NK314, a novel benzo[c]phenanthridine currently in clinical trials. Mol. Cancer Ther. 2007;6:1501–1508. doi: 10.1158/1535-7163.MCT-06-0780. PubMed DOI
Wang L.K., Johnson R.K., Hecht S.M. Inhibition of topoisomerase I function by nitidine and fagaronine. Chem. Res. Toxicol. 1993;6:813–818. doi: 10.1021/tx00036a010. PubMed DOI
Janin Y.L., Bisagni E., Carrez D. Synthesis of some benzo[h]quinoline derivatives. J. Heterocycl. Chem. 1993;30:1129–1131. doi: 10.1002/jhet.5570300452. DOI
Bernardo P.H., Wan K.-F., Sivaraman T., Xu J., Moore F.K., Hung A.W., Mok H.Y.K., Yu V.C., Chai C.L.L. Structure−activity relationship studies of phenanthridine-based Bcl-X L inhibitors. J. Med. Chem. 2008;51:6699–6710. doi: 10.1021/jm8005433. PubMed DOI
Yu Y., Singh S.K., Liu A., Li T.-K., Liu L.F., LaVoie E.J. Substituted dibenzo[c,h]cinnolines: Topoisomerase I-targeting anticancer agents. Bioorg. Med. Chem. 2003;11:1475–1491. doi: 10.1016/S0968-0896(02)00604-1. PubMed DOI
Yapi A.-D., Desbois N., Chezal J.-M., Chavignon O., Teulade J.-C., Valentin A., Blache Y. Design and preparation of aza-analogues of benzo[c]phenanthridine framework with cytotoxic and antiplasmodial activities. Eur. J. Med. Chem. 2010;45:2854–2859. doi: 10.1016/j.ejmech.2010.03.006. PubMed DOI
Steinhauer T.N., Girreser U., Meier C., Cushman M., Clement B. One-step synthetic access to isosteric and potent anticancer nitrogen heterocycles with the benzo[c]phenanthridine scaffold. Chem. A Eur. J. 2016;22:8301–8308. doi: 10.1002/chem.201600308. PubMed DOI
Hou Z., Yang R., Zhang C., Zhu L.-F., Miao F., Yang X.-J., Zhou L. 2-(Substituted phenyl)-3,4-dihydroisoquinolin-2-iums as novel antifungal lead compounds: Biological evaluation and structure-activity relationships. Molecules. 2013;18:10413–10424. doi: 10.3390/molecules180910413. PubMed DOI PMC
Yang X., Yao Y., Qin Y., Hou Z., Yang R., Miao F., Zhou L. Synthesis and in vitro antifungal activities of new 2-aryl-6,7-methylenedioxy-3,4-dihydroisoquinolin-2-ium bromides. Chem. Pharm. Bull. 2013;61:731–739. doi: 10.1248/cpb.c13-00221. PubMed DOI
Ishikawa T., Ishii H. Recent advances on antitumor-active benzo[c]phenanthridine alkaloids. Heterocycles. 1999;50:627. doi: 10.3987/REV-98-SR(H)9. DOI
Mackay S.P., Meth-Cohn O., Waigh R.D. Synthesis of quaternary benzo[c]phenanthridine alkaloids and their analogues. Adv. Heterocycl. Chem. 1996;67:345–389. doi: 10.1016/S0065-2725(08)60073-2. DOI
Stýskala J., Cankař P., Soural M., Hradil P., Vičar J., Šimánek V., Hlaváč J. Synthesis of isodecarine. Heterocycles. 2007;73:769. doi: 10.3987/COM-07-S(U)57. DOI
Stýskala J., Hlaváč J., Cankař P. Synthesis of oxidative dihydroxy metabolites of benzo[c]phenanthridines. Tetrahedron. 2013;69:4670–4678. doi: 10.1016/j.tet.2013.03.105. DOI
Larghi E.L., Obrist B.V., Kaufman T.S. A formal total synthesis of the marine alkaloid aaptamine. Tetrahedron. 2008;64:5236–5245. doi: 10.1016/j.tet.2008.03.036. DOI
Meisels A., Sondheimer F. The constituents of casimiroa edulis llave et lex. III. 1 The structure of casimiroin 2. J. Am. Chem. Soc. 1957;79:6328–6333. doi: 10.1021/ja01580a056. DOI
Majumdar K., Taher A., Debnath P. palladium-catalyzed intramolecular biaryl coupling: A highly efficient avenue for benzannulated pyranoquinolines and julolidine derivatives. Synthesis. 2009;2009:793–800. doi: 10.1055/s-0028-1083363. DOI
Harayama T., Aktyama T., Kawano K. A convenient synthesis of benzo[c]phenanthridine alkaloid, chelerythrine, by the palladium-assisted internal biaryl coupling reaction. Chem. Pharm. Bull. 1996;44:1634–1636. doi: 10.1248/cpb.44.1634. DOI
Campeau L.-C., Parisien M., Leblanc M., Fagnou K. Biaryl synthesis via direct arylation: Establishment of an efficient catalyst for intramolecular processes. J. Am. Chem. Soc. 2004;126:9186–9187. doi: 10.1021/ja049017y. PubMed DOI
Harayama T., Akiyama T., Akamatsu H., Kawano K., Abe H., Takeuchi Y. Total synthesis of benzo[c]phenanthridine alkaloids, chelerythrine and 12-methoxydihydrochelerythrine, by a palladium-assisted internal biaryl coupling reaction. Synthesis. 2001;2001:0444–0450. doi: 10.1055/s-2001-11424. DOI
Ackermann L. Carboxylate-assisted transition-metal-catalyzed C−H bond functionalizations: Mechanism and scope. Chem. Rev. 2011;111:1315–1345. doi: 10.1021/cr100412j. PubMed DOI
De S., Mishra S., Kakde B.N., Dey D., Bisai A. Expeditious approach to pyrrolophenanthridones, phenanthridines, and benzo[c]phenanthridines via organocatalytic direct biaryl-coupling promoted by potassium tert -butoxide. J. Org. Chem. 2013;78:7823–7844. doi: 10.1021/jo400890k. PubMed DOI
Dewanji A., Murarka S., Curran D.P., Studer A. Phenyl hydrazine as initiator for direct arene C–H arylation via base promoted homolytic aromatic substitution. Org. Lett. 2013;15:6102–6105. doi: 10.1021/ol402995e. PubMed DOI PMC
Carpino L.A. Simple preparation of active manganese dioxide from activated carbon. J. Org. Chem. 1970;35:3971–3972. doi: 10.1021/jo00836a091. DOI
Murray P.R., Baron E.J., Pfaller M.A., Tenover F.C., Yolken R.H. Manual of Clinical Microbiology. 7th ed. American Society for Microbiology; Washington, DC, USA: 1999.
Methods for Dilution Antimicrobial Susceptibility Tests for Bacteria that Grow Aerobically. 8th ed. Clinical and Laboratory Standards Institute (CLSI); Villanova, PA, USA: 2009. Approved Standard Document M07-A7.
Williams A.B., Schumacher B. p53 in the DNA-damage-repair process. Cold Spring Harb. Perspect. Med. 2016;6:a026070. doi: 10.1101/cshperspect.a026070. PubMed DOI PMC
Zatloukal M., Jorda R., Gucký T., Řezníčková E., Voller J., Pospíšil T., Malínková V., Adamcová H., Kryštof V., Strnad M. Synthesis and in vitro biological evaluation of 2,6,9-trisubstituted purines targeting multiple cyclin-dependent kinases. Eur. J. Med. Chem. 2013;61:61–72. doi: 10.1016/j.ejmech.2012.06.036. PubMed DOI
Heterocycles in Medicinal Chemistry