Novel Riboflavin-Inspired Conjugated Bio-Organic Semiconductors
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
PubMed
30189689
PubMed Central
PMC6225382
DOI
10.3390/molecules23092271
PII: molecules23092271
Knihovny.cz E-zdroje
- Klíčová slova
- bio-inspired material, biomimetic energy storage, conjugated materials, flavins, oxygen evolution,
- MeSH
- biomimetické materiály chemie MeSH
- biomimetika * metody MeSH
- elektrochemie MeSH
- flaviny chemie MeSH
- molekulární modely MeSH
- molekulární struktura MeSH
- polovodiče * MeSH
- riboflavin chemie MeSH
- spektrofotometrie ultrafialová MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- flaviny MeSH
- isoalloxazine MeSH Prohlížeč
- riboflavin MeSH
Flavins are known to be extremely versatile, thus enabling routes to innumerable modifications in order to obtain desired properties. Thus, in the present paper, the group of bio-inspired conjugated materials based on the alloxazine core is synthetized using two efficient novel synthetic approaches providing relatively high reaction yields. The comprehensive characterization of the materials, in order to evaluate the properties and application potential, has shown that the modification of the initial alloxazine core with aromatic substituents allows fine tuning of the optical bandgap, position of electronic orbitals, absorption and emission properties. Interestingly, the compounds possess multichromophoric behavior, which is assumed to be the results of an intramolecular proton transfer.
Zobrazit více v PubMed
Glowacki E.D., Tangorra R.R., Coskun H., Farka D., Operamolla A., Kanbur Y., Milano F., Giotta L., Farinola G.M., Sariciftci N.S. Bioconjugation of hydrogen-bonded organic semiconductors with functional proteins. J. Mater. Chem. C. 2015;3:6554–6564. doi: 10.1039/C5TC00556F. DOI
Simon D.T., Gabrielsson E.O., Tybrandt K., Berggren M. Organic Bioelectronics: Bridging the Signaling Gap between Biology and Technology. Chem. Rev. 2016;116:13009–13041. doi: 10.1021/acs.chemrev.6b00146. PubMed DOI
Zhang S.-F., Chen X.-K., Fan J.-X., Ren A.-M. Rational design of bio-inspired high-performance ambipolar organic semiconductor materials based on indigo and its derivatives. Org. Electron. 2015;24:12–25. doi: 10.1016/j.orgel.2015.05.021. DOI
Cipriano T., Knotts G., Laudari A., Bianchi R.C., Alves W.A., Guha S. Bioinspired Peptide Nanostructures for Organic Field-Effect Transistors. ACS Appl. Mater. Interfaces. 2014;6:21408–21415. doi: 10.1021/am5064124. PubMed DOI
Barbarella G., di Maria F. Supramolecular Oligothiophene Microfibers Spontaneously Assembled on Surfaces or Coassembled with Proteins inside Live Cells. Acc. Chem. Res. 2015;48:2230–2241. doi: 10.1021/acs.accounts.5b00241. PubMed DOI
Ekiz M.S., Cinar G., Khalily M.A., Guler M.O. Self-assembled peptide nanostructures for functional materials. Nanotechnology. 2016;27:402002. doi: 10.1088/0957-4484/27/40/402002. PubMed DOI
Jürgensen N., Ackermann M., Marszalek T., Zimmermann J., Morfa A.J., Pisula W., Bunz U.H.F., Hinkel F., Hernandez-Sosa G. Solution-Processed Bio-OLEDs with a Vitamin-Derived Riboflavin Tetrabutyrate Emission Layer. ACS Sustain. Chem. Eng. 2017;5:5368–5372. doi: 10.1021/acssuschemeng.7b00675. DOI
Minami T., Sato T., Minamiki T., Tokito S. An extended-gate type organic FET based biosensor for detecting biogenic amines in aqueous solution. Anal. Sci. 2015;31:721–724. doi: 10.2116/analsci.31.721. PubMed DOI
Minami T., Sato T., Minamiki T., Fukuda K., Kumaki D., Tokito S. A novel OFET-based biosensor for the selective and sensitive detection of lactate levels. Biosens. Bioelectron. 2015;74:45–48. doi: 10.1016/j.bios.2015.06.002. PubMed DOI
Hardy J.G., Amend M.N., Geissler S., Lynch V.M., Schmidt C.E. Peptide-directed assembly of functional supramolecular polymers for biomedical applications: Electroactive molecular tongue-twisters (oligoalanine-oligoaniline-oligoalanine) for electrochemically enhanced drug delivery. J. Mater. Chem. B. 2015;3:5005–5009. doi: 10.1039/C5TB00106D. PubMed DOI
Tybrandt K., Forchheimer R., Berggren M. Logic gates based on ion transistors. Nat. Commun. 2012;3:871. doi: 10.1038/ncomms1869. PubMed DOI
Ramses V.M., Jamie L.B., Carina R.F., Jin L., Robert F.S., Rui M.D.N., Suo Z., George M.W. Robotic Tentacles with Three-Dimensional Mobility Based on Flexible Elastomers. Adv. Mater. 2012;25:205–212. PubMed
Yang D., Mohit S.V., So J.H., Mosadegh B., Keplinger C., Lee B., Khashai F., Lossner E., Suo Z., George M.W. Buckling Pneumatic Linear Actuators Inspired by Muscle. Adv. Mater. Technol. 2016;1:1–6. doi: 10.1002/admt.201600055. DOI
Irimia-Vladu M., Pavel A.T., Reisinger M., Shmygleva L., Kanbur Y., Schwabegger G., Bodea M., Schwödiauer R., Mumyatov A., Jeffrey W.F., et al. Biocompatible and Biodegradable Materials for Organic Field-Effect Transistors. Adv. Funct. Mater. 2010;20:4069–4076. doi: 10.1002/adfm.201001031. DOI
Christopher J.B., Bao Z. Organic Thin-Film Transistors Fabricated on Resorbable Biomaterial Substrates. Adv. Mater. 2009;22:651–655. PubMed PMC
Tao H., Mark A.B., Yang M., Zhang J., Liu M., Sean M.S., Richard D.A., Manu S.M., Michael C.M., John A.R., et al. Silk-Based Conformal, Adhesive, Edible Food Sensors. Adv. Mater. 2012;24:1067–1072. doi: 10.1002/adma.201103814. PubMed DOI
Sandro G., Vincent M. Mechanisms of flavoprotein-catalyzed reactions. Eur. J. Biochem. 1989;181:1–17. PubMed
Cuello A.O., McIntosh C.M., Rotello V.M. Model Systems for Flavoenzyme Activity. The Role of N(3)-H Hydrogen Bonding in Flavin Redox Processes. J. Am. Chem. Soc. 2000;122:3517–3521. doi: 10.1021/ja994204v. DOI
Kurisu G., Kusunoki M., Katoh E., Yamazaki T., Teshima K., Onda Y., Kimata-Ariga Y., Hase T. Structure of the electron transfer complex between ferredoxin and ferredoxin-NADP+ reductase. Nat. Struct. Biol. 2001;8:117–121. doi: 10.1038/84097. PubMed DOI
Joosten V., van Berkel W.J.H. Flavoenzymes. Curr. Opin. Chem. Biol. 2007;11:195–202. doi: 10.1016/j.cbpa.2007.01.010. PubMed DOI
Miura R. Versatility and specificity in flavoenzymes: Control mechanisms of flavin reactivity. Chem. Rec. 2001;1:183–194. doi: 10.1002/tcr.1007. PubMed DOI
Kakkar P., Singh B. Mitochondria: A hub of redox activities and cellular distress control. Mol. Cell. Biochem. 2007;305:235–253. doi: 10.1007/s11010-007-9520-8. PubMed DOI
Lee M., Hong J., Seo D.H., Dong H.N., Ki T.N., Kang K., Chan B.P. Redox Cofactor from Biological Energy Transduction as Molecularly Tunable Energy-Storage Compound. Angew. Chem. Int. Ed. 2013;52:8322–8328. doi: 10.1002/anie.201301850. PubMed DOI
Hong J., Lee M., Lee B., Seo D.-H., Park C.B., Kang K. Biologically inspired pteridine redox centres for rechargeable batteries. Nat. Commun. 2014;5:5335. doi: 10.1038/ncomms6335. PubMed DOI
Orita A., Verde M.G., Sakai M., Meng Y.S. A biomimetic redox flow battery based on flavin mononucleotide. Nat. Commun. 2016;7:13230. doi: 10.1038/ncomms13230. PubMed DOI PMC
Lin K., Gómez-Bombarelli R., Beh E.S., Tong L., Chen Q., Valle A., Aspuru-Guzik A., Aziz M.J., Gordon R.G. A redox-flow battery with an alloxazine-based organic electrolyte. Nat. Energy. 2016;1:16102. doi: 10.1038/nenergy.2016.102. DOI
Pauszek R.F., Kodali G., Caldwell S.T., Fitzpatrick B., Zainalabdeen N.Y., Cooke G., Rotello V.M., Stanley R.J. Excited State Charge Redistribution and Dynamics in the Donor-π-Acceptor Flavin Derivative ABFL. J. Phys. Chem. B. 2013;117:15684–15694. doi: 10.1021/jp406420h. PubMed DOI
Legrand Y.-M., Gray M., Cooke G., Rotello V.M. Model Systems for Flavoenzyme Activity: Relationships between Cofactor Structure, Binding and Redox Properties. J. Am. Chem. Soc. 2003;125:15789–15795. doi: 10.1021/ja036940b. PubMed DOI
Jortner J., Ratner M.A. Molecular Electronics. Blackwell; Oxford, UK: 1997.
Carter F.L., Siatkowski R.F., Wohltjen J. Molecular Electronic Devices. Elsevier; Amsterdam, The Netherlands: 1988.
Akiyama T., Simeno F., Murakami M., Yoneda F. Flavin-6-carboxylic acids as novel and simple flavoenzyme models. Nonenzymatic stabilization of the flavin semiquinone radical and the 4a-hydroperoxyflavin by intramolecular hydrogen bonding. J. Am. Chem. Soc. 1992;114:6613–6620. doi: 10.1021/ja00043a002. DOI
Zoltowski D., Nash A.I., Gardner K.H. Variations in Protein-Flavin Hydrogen Bonding in a Light, Oxygen, Voltage Domain Produce Non-Arrhenius Kinetics of Adduct Decay. Biochemistry. 2011;50:8771–8779. doi: 10.1021/bi200976a. PubMed DOI PMC
Gozem S., Mirzakulova E., Schapiro I., Melaccio F., Glusac K.D., Olivucci M. Conical Intersection Controls the Deactivation of the Bacterial Luciferase Fluorophore. Angew. Chem. Int. Ed. 2014;53:9870–9875. doi: 10.1002/anie.201404011. PubMed DOI
Szymański M., Maciejewski A., Steer R.P. Photophysics of thione triplets in solution: Factors controlling the rates of radiationless decay. Chem. Phys. 1988;124:143–154. doi: 10.1016/0301-0104(88)85090-0. DOI
Nandwana V., Samuel I., Cooke G., Rotello V.M. Aromatic stacking interactions in flavin model systems. Acc. Chem. Res. 2013;46:1000–1009. doi: 10.1021/ar300132r. PubMed DOI
Prongjit M., Sucharitakul J., Palfey B.A., Chaiyen P. Oxidation mode of pyranose 2-oxidase is controlled by pH. Biochemistry. 2013;52:1437–1445. doi: 10.1021/bi301442x. PubMed DOI PMC
Marian C.M., Nakagawa S., Rai-Constapel V., Karasulu B., Thiel W. Photophysics of flavin derivatives absorbing in the blue-green region: Thioflavins as potential cofactors of photoswitches. J. Phys. Chem. B. 2014;118:1743–1753. doi: 10.1021/jp4098233. PubMed DOI
Kramer R.H., Fortin D.L., Trauner D. New photochemical tools for controlling neuronal activity. Curr. Opin. Neurobiol. 2009;19:544–552. doi: 10.1016/j.conb.2009.09.004. PubMed DOI PMC
Mataranga-Popa L.N., Torje I., Ghosh T., Leitl M.J., Spath A., Novianti M.L., Webster R.D., Konig B. Synthesis and electronic properties of π-extended flavins. Org. Biomol. Chem. 2015;13:10198–10204. doi: 10.1039/C5OB01418B. PubMed DOI
Sakai K., Nagahara K., Yoshii Y., Hoshino N., Akutagawa T. Structural and Spectroscopic Study of 6,7-Dicyano-Substituted Lumazine with High Electron Affinity and Proton Acidity. J. Phys. Chem. A. 2013;117:3614–3624. doi: 10.1021/jp401528c. PubMed DOI
Salzmann S., Marian C.M. The photophysics of alloxazine: A quantum chemical investigation in vacuum and solution. Photochem. Photobiol. Sci. 2009;8:1655–1666. doi: 10.1039/b9pp00022d. PubMed DOI
Chang X.-P., Xie X.-Y., Lin S.-Y., Cui G. QM/MM Study on Mechanistic Photophysics of Alloxazine Chromophore in Aqueous Solution. J. Phys. Chem. A. 2016;120:6129–6136. doi: 10.1021/acs.jpca.6b02669. PubMed DOI
Cain C.K., Mallette M.F., Taylor E.C. Pyrimido[4,5-b]pyrazines. I. Synthesis of 6,7-symmetrically substituted derivatives. J. Am. Chem. Soc. 1946;68:1996–1999. doi: 10.1021/ja01214a036. PubMed DOI
Wen L., Rasmussen S. Synthesis of thieno[3,4-b]pyrazine oligomers as precursors to low band gap materials and models of effective conjugation. Polym. Prepr. 2007;48:132–133.
Nietfeld J.P., Schwiderski R.L., Gonnella T.P., Rasmussen S.C. Structural Effects on the Electronic Properties of Extended Fused-Ring Thieno[3,4-b]pyrazine Analogues. J. Org. Chem. 2011;76:6383–6388. doi: 10.1021/jo200850w. PubMed DOI
Chen S., Hossain M.S., Foss F.W. Organocatalytic Dakin Oxidation by Nucleophilic Flavin Catalysts. Org. Lett. 2012;14:2806–2809. doi: 10.1021/ol3010326. PubMed DOI
Vinot N. Synthesis of 2,4-dihydropteridines substituted in the 6 and 7 positions. C. R. Acad. Sci. Paris Ser. C. 1968;266:1104–1106.
Zina A.A.A., Najwa M.J.A., Zeenah W.A., Najim A.A. Synthesis and Biological Evaluation of New Dipyridylpteridines, Lumazines, and Related Analogues. J. Heterocyclic Chem. 2016;54:895–903.
Tajbakhsh M., Bakooie H., Ghassemzadeh M., Heravi M. A new general and regioselective method for the synthesis of 6,7-disubstituted lumazines. Indian J. Heterocycl. Chem. 2000;9:235–236.
Ram V., Knappe W.R., Pfleiderer W. Synthesis and photochemistry of N-8 substituted lumazines. Tetrahedron Lett. 1977;18:3795–3798. doi: 10.1016/S0040-4039(01)83356-6. DOI
Strakhov A.V., Pushkareva Z.V. Heterocyclic N-oxides. IX. Preparation and properties of some heterocyclic N-oxides with condensed rings. Tr. Ural. Politekh. Inst. im. S. M. Kirova. 1960:34–44.
Holmgren A.V., Wenner W. Alloxan monohydrate. Org. Synth. 1952;32:6–7.
Hu J., Zhang D., Harris F.W. Ruthenium(III) Chloride Catalyzed Oxidation of Pyrene and 2,7-Disubstituted Pyrenes: An Efficient, One-Step Synthesis of Pyrene-4,5-diones and Pyrene-4,5,9,10-tetraones. J. Org. Chem. 2005;70:707–708. doi: 10.1021/jo048509q. PubMed DOI
Hartung W.H. Catalytic reduction of nitriles and oximes. J. Am. Chem. Soc. 1928;50:3370–3374. doi: 10.1021/ja01399a033. DOI
Abdolmaleki A., Malek-Ahmadi S. A partially water-soluble cationic Mn(III)-salphen complex for catalytic epoxidation. Can. J. Chem. 2011;89:1202–1206. doi: 10.1139/v11-094. DOI
Joshi S.C., Mehrotra K.N. A new synthesis of pyrazines. Indian J. Chem. Sect. B. 1983;22B:396–397.
Song Y., Wang Q., Ding Z., Tao F. Synthesis of hydroxycedranone and aminohydroxycedrane. Synth. Commun. 1999;29:4171–4178. doi: 10.1080/00397919908085890. DOI
Xiao J., Xiao X., Zhao Y., Wu B., Liu Z., Zhang X., Wang S., Zhao X., Liu L., Jiang L. Synthesis, physical properties and self-assembly behavior of azole-fused pyrene derivatives. Nanoscale. 2013;5:5420–5425. doi: 10.1039/c3nr00523b. PubMed DOI
Alanine A., Buettelmann B., Heitz N.M.-P., Pinard E., Wyler R.F. Preparation of Phenylalkylaminocyclohexylphenols and Related Compounds as NMDA Receptor Blockers. 6,184,236 B1. U.S. Patent. 2001
Mamada M., Pérez-Bolívar C., Kumaki D., Nina A.E., Tokito S., Anzenbacher P. Benzimidazole Derivatives: Synthesis, Physical Properties, and n-Type Semiconducting Properties. Chem. Eur. J. 2014;20:11835–11846. doi: 10.1002/chem.201403058. PubMed DOI
Chung S.-K., Lee K.-W., Kang H.I., Yamashita C., Kudo M., Yoshida Y. Design and synthesis of potential inhibitors of the ergosterol biosynthesis as antifungal agents. Bioorg. Med. Chem. 2000;8:2475–2486. doi: 10.1016/S0968-0896(00)00177-2. PubMed DOI
Wang X., Silverman R.B. Monoamine oxidase-catalyzed oxidation of endo,endo-2-amino-6-[(Z)-2′-phenyl]ethenylbicyclo[2.2.1]heptane, a potential probe for a radical cation intermediate. Bioorg. Med. Chem. 2000;8:1645–1651. doi: 10.1016/S0968-0896(00)00094-8. PubMed DOI
Shearer J.M., Rokita S.E. Diamine preparation for synthesis of a water soluble Ni(II) salen complex. Bioorg. Med. Chem. Lett. 1999;9:501–504. doi: 10.1016/S0960-894X(99)00020-7. PubMed DOI
Dalton S.R., Glazier S., Leung B., Win S., Megatulski C., Burgmayer S.J.N. DNA binding by Ru(II)–bis(bipyridine)–pteridinyl complexes. J. Biol. Inorg. Chem. 2008;13:1133–1148. doi: 10.1007/s00775-008-0399-y. PubMed DOI
Sherman W.R., Taylor E.C., Jr. Diaminouracil hydrochloride. Org. Synth. 1957;37:15–17.
Chang K.L., Mi S.K., Jin S.G., In-Sook H.L. Benzoin condensation reactions of 5-membered heterocyclic compounds. J. Heterocyclic Chem. 1992;29:149–153.
Tyagi A., Penzkofer A. Absorption and emission spectroscopic characterization of lumichrome in aqueous solutions. Photochem. Photobiol. 2010;87:524–533. doi: 10.1111/j.1751-1097.2010.00836.x. PubMed DOI
Wei X., Pan W., Duan W., Hollas A., Yang Z., Li B., Nie Z., Liu J., Reed D., Wang W., et al. Materials and Systems for Organic Redox Flow Batteries: Status and Challenges. ACS Energy Lett. 2017;2:2187–2204. doi: 10.1021/acsenergylett.7b00650. DOI
Petering H.G., van Giessen G.J. 8-Chloroalloxazine, A New Diuretic. Synthesis and Structure. J. Org. Chem. 1961;26:2818–2821. doi: 10.1021/jo01066a047. DOI
Ross W.C.J. Lipoid-soluble alloxazine derivatives. J. Chem. Soc. 1948:219–224. doi: 10.1039/jr9480000219. PubMed DOI
Frisch M.J., Trucks G.W., Schlegel H.B., Scuseria G.E., Robb M.A., Cheeseman J.R., Scalmani G., Barone V., Petersson G.A., Nakatsuji H., et al. Gaussian 09, Revision A.02. Gaussian, Inc.; Wallingford, CT, USA: 2016.