• This record comes from PubMed

Intragenic Transcriptional cis-Antagonism Across SLC6A3

. 2019 Jun ; 56 (6) : 4051-4060. [epub] 20180927

Language English Country United States Media print-electronic

Document type Journal Article

Grant support
R01 DA021409 NIDA NIH HHS - United States
R21 DA031573 NIDA NIH HHS - United States
DA021409 National Institutes of Health
DA031573 National Institutes of Health

Links

PubMed 30259411
PubMed Central PMC6437023
DOI 10.1007/s12035-018-1357-5
PII: 10.1007/s12035-018-1357-5
Knihovny.cz E-resources

A promoter can be regulated by various cis-acting elements so that delineation of the regulatory modes among them may help understand developmental, environmental and genetic mechanisms in gene activity. Here we report that the human dopamine transporter gene SLC6A3 carries a 5' distal 5-kb super enhancer (5KSE) which upregulated the promoter by 5-fold. Interestingly, 5KSE is able to prevent 3' downstream variable number tandem repeats (3'VNTRs) from silencing the promoter. This new enhancer consists of a 5'VNTR and three repetitive sub-elements that are conserved in primates. Two of 5KSE's sub-elements, E-9.7 and E-8.7, upregulate the promoter, but only the later could continue doing so in the presence of 3'VNTRs. Finally, E-8.7 is activated by novel dopaminergic transcription factors including SRP54 and Nfe2l1. Together, these results reveal a multimodal regulatory mechanism in SLC6A3.

See more in PubMed

Hughes JR, Roberts N, McGowan S, Hay D, Giannoulatou E, Lynch M, De Gobbi M, Taylor S, Gibbons R, Higgs DR (2014) Analysis of hundreds of cis-regulatory landscapes at high resolution in a single, high-throughput experiment. Nature genetics 46 (2):205–212. doi:10.1038/ng.2871 PubMed DOI

Maston GA, Evans SK, Green MR (2006) Transcriptional regulatory elements in the human genome. Annual review of genomics and human genetics 7:29–59. doi:10.1146/annurev.genom.7.080505.115623 PubMed DOI

Noonan JP, McCallion AS (2010) Genomics of long-range regulatory elements. Annual review of genomics and human genetics 11:1–23. doi:10.1146/annurev-genom-082509-141651 PubMed DOI

Sudmant PH, Rausch T, Gardner EJ, Handsaker RE, Abyzov A, Huddleston J, Zhang Y, Ye K, Jun G, Fritz MH, Konkel MK, Malhotra A, Stutz AM, Shi X, Casale FP, Chen J, Hormozdiari F, Dayama G, Chen K, Malig M, Chaisson MJP, Walter K, Meiers S, Kashin S, Garrison E, Auton A, Lam HYK, Mu XJ, Alkan C, Antaki D, Bae T, Cerveira E, Chines P, Chong Z, Clarke L, Dal E, Ding L, Emery S, Fan X, Gujral M, Kahveci F, Kidd JM, Kong Y, Lameijer EW, McCarthy S, Flicek P, Gibbs RA, Marth G, Mason CE, Menelaou A, Muzny DM, Nelson BJ, Noor A, Parrish NF, Pendleton M, Quitadamo A, Raeder B, Schadt EE, Romanovitch M, Schlattl A, Sebra R, Shabalin AA, Untergasser A, Walker JA, Wang M, Yu F, Zhang C, Zhang J, Zheng-Bradley X, Zhou W, Zichner T, Sebat J, Batzer MA, McCarroll SA, Mills RE, Gerstein MB, Bashir A, Stegle O, Devine SE, Lee C, Eichler EE, Korbel JO (2015) An integrated map of structural variation in 2,504 human genomes. Nature 526 (7571):75–81. doi:10.1038/nature15394 PubMed DOI PMC

Auton A, Brooks LD, Durbin RM, Garrison EP, Kang HM, Korbel JO, Marchini JL, McCarthy S, McVean GA, Abecasis GR (2015) A global reference for human genetic variation. Nature 526 (7571):68–74. doi:10.1038/nature15393 PubMed DOI PMC

Jaber M, Jones S, Giros B, Caron MG (1997) The dopamine transporter: a crucial component regulating dopamine transmission. Movement disorders : official journal of the Movement Disorder Society 12 (5):629–633. doi:10.1002/mds.870120502 PubMed DOI

Kristensen AS, Andersen J, Jorgensen TN, Sorensen L, Eriksen J, Loland CJ, Stromgaard K, Gether U (2011) SLC6 neurotransmitter transporters: structure, function, and regulation. Pharmacological reviews 63 (3):585–640. doi:10.1124/pr.108.000869 PubMed DOI

Amara SG, Kuhar MJ (1993) Neurotransmitter transporters: recent progress. Annual review of neuroscience 16:73–93. doi:10.1146/annurev.ne.16.030193.000445 PubMed DOI

Lin Z, Canales JJ, Bjorgvinsson T, Thomsen M, Qu H, Liu QR, Torres GE, Caine SB (2011) Monoamine transporters: vulnerable and vital doorkeepers. Progress in molecular biology and translational science 98:1–46. doi:10.1016/b978-0-12-385506-0.00001-6 PubMed DOI PMC

Vandenbergh DJ, Persico AM, Hawkins AL, Griffin CA, Li X, Jabs EW, Uhl GR (1992) Human dopamine transporter gene (DAT1) maps to chromosome 5p15.3 and displays a VNTR. Genomics 14 (4):1104–1106 PubMed

Guindalini C, Howard M, Haddley K, Laranjeira R, Collier D, Ammar N, Craig I, O’Gara C, Bubb VJ, Greenwood T, Kelsoe J, Asherson P, Murray RM, Castelo A, Quinn JP, Vallada H, Breen G (2006) A dopamine transporter gene functional variant associated with cocaine abuse in a Brazilian sample. Proceedings of the National Academy of Sciences of the United States of America 103 (12):4552–4557. doi:10.1073/pnas.0504789103 PubMed DOI PMC

Franke B, Vasquez AA, Johansson S, Hoogman M, Romanos J, Boreatti-Hummer A, Heine M, Jacob CP, Lesch KP, Casas M, Ribases M, Bosch R, Sanchez-Mora C, Gomez-Barros N, Fernandez-Castillo N, Bayes M, Halmoy A, Halleland H, Landaas ET, Fasmer OB, Knappskog PM, Heister AJ, Kiemeney LA, Kooij JJ, Boonstra AM, Kan CC, Asherson P, Faraone SV, Buitelaar JK, Haavik J, Cormand B, Ramos-Quiroga JA, Reif A (2010) Multicenter analysis of the SLC6A3/DAT1 VNTR haplotype in persistent ADHD suggests differential involvement of the gene in childhood and persistent ADHD. Neuropsychopharmacology : official publication of the American College of Neuropsychopharmacology 35 (3):656–664. doi:10.1038/npp.2009.170 PubMed DOI PMC

Zhao Y, Xiong N, Liu Y, Zhou Y, Li N, Qing H, Lin Z (2013) Human dopamine transporter gene: differential regulation of 18-kb haplotypes. Pharmacogenomics 14 (12):1481–1494. doi:10.2217/pgs.13.141 PubMed DOI PMC

Fuke S, Sasagawa N, Ishiura S (2005) Identification and characterization of the Hesr1/Hey1 as a candidate trans-acting factor on gene expression through the 3’ non-coding polymorphic region of the human dopamine transporter (DAT1) gene. Journal of biochemistry 137 (2):205– 216. doi:10.1093/jb/mvi020 PubMed DOI

Sacchetti P, Brownschidle LA, Granneman JG, Bannon MJ (1999) Characterization of the 5’-flanking region of the human dopamine transporter gene. Brain research Molecular brain research 74 (1–2):167–174 PubMed

Zhao Y, Zhou Y, Xiong N, Lin Z (2012) Identification of an intronic cis-acting element in the human dopamine transporter gene. Molecular biology reports 39 (5):5393–5399. doi:10.1007/s11033-011-1339-4 PubMed DOI PMC

Kouzmenko AP, Pereira AM, Singh BS (1997) Intronic sequences are involved in neural targeting of human dopamine transporter gene expression. Biochemical and biophysical research communications 240 (3):807–811. doi:10.1006/bbrc.1997.7754 PubMed DOI

Liu K, Yu J, Zhao J, Zhou Y, Xiong N, Xu J, Wang T, Bell RL, Qing H, Lin Z (2017) (AZI2)3’UTR Is a New SLC6A3 Downregulator Associated with an Epistatic Protection Against Substance Use Disorders. Molecular neurobiology doi:10.1007/s12035-017-0781-2 PubMed DOI PMC

Sacchetti P, Mitchell TR, Granneman JG, Bannon MJ (2001) Nurr1 enhances transcription of the human dopamine transporter gene through a novel mechanism. Journal of neurochemistry 76 (5):1565–1572 PubMed

Wang J, Bannon MJ (2005) Sp1 and Sp3 activate transcription of the human dopamine transporter gene. Journal of neurochemistry 93 (2):474–482. doi:10.1111/j.1471-4159.2005.03051.x PubMed DOI

Martinat C, Bacci JJ, Leete T, Kim J, Vanti WB, Newman AH, Cha JH, Gether U, Wang H, Abeliovich A (2006) Cooperative transcription activation by Nurr1 and Pitx3 induces embryonic stem cell maturation to the midbrain dopamine neuron phenotype. Proceedings of the National Academy of Sciences of the United States of America 103 (8):2874–2879. doi:10.1073/pnas.0511153103 PubMed DOI PMC

Stotz A, Linder P (1990) The ADE2 gene from Saccharomyces cerevisiae: sequence and new vectors. Gene 95 (1):91–98 PubMed

Fromont-Racine M, Rain JC, Legrain P (1997) Toward a functional analysis of the yeast genome through exhaustive two-hybrid screens. Nature genetics 16 (3):277–282. doi:10.1038/ng0797-277 PubMed DOI

Kennedy JL, Xiong N, Yu J, Zai CC, Pouget JG, Li J, Liu K, Qing H, Wang T, Martin E, Levy DL, Lin Z (2016) Increased Nigral SLC6A3 Activity in Schizophrenia Patients: Findings From the Toronto-McLean Cohorts. Schizophrenia bulletin 42 (3):772–781. doi:10.1093/schbul/sbv191 PubMed DOI PMC

Hannan AJ (2018) Tandem repeats mediating genetic plasticity in health and disease. Nature reviews Genetics doi:10.1038/nrg.2017.115 PubMed DOI

Zhou Y, Michelhaugh SK, Schmidt CJ, Liu JS, Bannon MJ, Lin Z (2014) Ventral midbrain correlation between genetic variation and expression of the dopamine transporter gene in cocaine-abusing versus non-abusing subjects. Addiction biology 19 (1):122–131. doi:10.1111/j.1369-1600.2011.00391.x PubMed DOI PMC

Li S, Kim KY, Kim JH, Kim JH, Park MS, Bahk JY, Kim MO (2004) Chronic nicotine and smoking treatment increases dopamine transporter mRNA expression in the rat midbrain. Neuroscience letters 363 (1):29–32. doi:10.1016/j.neulet.2004.03.053 PubMed DOI

Hadjiconstantinou M, Duchemin AM, Zhang H, Neff NH (2011) Enhanced dopamine transporter function in striatum during nicotine withdrawal. Synapse (New York, NY) 65 (2):91–98. doi:10.1002/syn.20820 PubMed DOI

Filipenko ML, Alekseyenko OV, Beilina AG, Kamynina TP, Kudryavtseva NN (2001) Increase of tyrosine hydroxylase and dopamine transporter mRNA levels in ventral tegmental area of male mice under influence of repeated aggression experience. Brain research Molecular brain research 96 (1–2):77–81 PubMed

Mantsch JR, Baker DA, Funk D, Le AD, Shaham Y (2016) Stress-Induced Reinstatement of Drug Seeking: 20 Years of Progress. Neuropsychopharmacology : official publication of the American College of Neuropsychopharmacology 41 (1):335–356. doi:10.1038/npp.2015.142 PubMed DOI PMC

Ong ZY, Muhlhausler BS (2011) Maternal “junk-food” feeding of rat dams alters food choices and development of the mesolimbic reward pathway in the offspring. FASEB journal : official publication of the Federation of American Societies for Experimental Biology 25 (7):2167–2179. doi:10.1096/fj.10-178392 PubMed DOI PMC

Kandel ER, Kandel DB (2014) Shattuck Lecture. A molecular basis for nicotine as a gateway drug. The New England journal of medicine 371 (10):932–943. doi:10.1056/NEJMsa1405092 PubMed DOI PMC

Amendt BA, Sutherland LB, Russo AF (1999) Transcriptional antagonism between Hmx1 and Nkx2.5 for a shared DNA-binding site. The Journal of biological chemistry 274 (17):11635–11642 PubMed

Bougarne N, Paumelle R, Caron S, Hennuyer N, Mansouri R, Gervois P, Staels B, Haegeman G, De Bosscher K (2009) PPARalpha blocks glucocorticoid receptor alpha-mediated transactivation but cooperates with the activated glucocorticoid receptor alpha for transrepression on NF-kappaB. Proceedings of the National Academy of Sciences of the United States of America 106 (18):7397–7402. doi:10.1073/pnas.0806742106 PubMed DOI PMC

Hoppe KL, Francone OL (1998) Binding and functional effects of transcription factors Sp1 and Sp3 on the proximal human lecithin:cholesterol acyltransferase promoter. Journal of lipid research 39 (5):969–977 PubMed

Ilsley MD, Gillinder KR, Magor GW, Huang S, Bailey TL, Crossley M, Perkins AC (2017) Kruppel-like factors compete for promoters and enhancers to fine-tune transcription. Nucleic acids research 45 (11):6572–6588. doi:10.1093/nar/gkx441 PubMed DOI PMC

Joseph SR, Palfy M, Hilbert L, Kumar M, Karschau J, Zaburdaev V, Shevchenko A, Vastenhouw NL (2017) Competition between histone and transcription factor binding regulates the onset of transcription in zebrafish embryos. eLife 6. doi:10.7554/eLife.23326 PubMed DOI PMC

Pierce SL, England SK (2010) SK3 channel expression during pregnancy is regulated through estrogen and Sp factor-mediated transcriptional control of the KCNN3 gene. American journal of physiology Endocrinology and metabolism 299 (4):E640–646. doi:10.1152/ajpendo.00063.2010 PubMed DOI PMC

Culverhouse R, Suarez BK, Lin J, Reich T (2002) A perspective on epistasis: limits of models displaying no main effect. American journal of human genetics 70 (2):461–471. doi:10.1086/338759 PubMed DOI PMC

Hemani G, Knott S, Haley C (2013) An evolutionary perspective on epistasis and the missing heritability. PLoS genetics 9 (2):e1003295. doi:10.1371/journal.pgen.1003295 PubMed DOI PMC

Zuk O, Hechter E, Sunyaev SR, Lander ES (2012) The mystery of missing heritability: Genetic interactions create phantom heritability. Proceedings of the National Academy of Sciences of the United States of America 109 (4):1193–1198. doi:10.1073/pnas.1119675109 PubMed DOI PMC

Fujita M, Shimada S, Nishimura T, Uhl GR, Tohyama M (1993) Ontogeny of dopamine transporter mRNA expression in the rat brain. Brain research Molecular brain research 19 (3):222–226 PubMed

Nord AS, Blow MJ, Attanasio C, Akiyama JA, Holt A, Hosseini R, Phouanenavong S, Plajzer-Frick I, Shoukry M, Afzal V, Rubenstein JL, Rubin EM, Pennacchio LA, Visel A (2013) Rapid and pervasive changes in genome-wide enhancer usage during mammalian development. Cell 155 (7):1521–1531. doi:10.1016/j.cell.2013.11.033 PubMed DOI PMC

Osterwalder M, Barozzi I, Tissieres V, Fukuda-Yuzawa Y, Mannion BJ, Afzal SY, Lee EA, Zhu Y, Plajzer-Frick I, Pickle CS, Kato M, Garvin TH, Pham QT, Harrington AN, Akiyama JA, Afzal V, Lopez-Rios J, Dickel DE, Visel A, Pennacchio LA (2018) Enhancer redundancy provides phenotypic robustness in mammalian development. Nature 554 (7691):239–243. doi:10.1038/nature25461 PubMed DOI PMC

Villaescusa JC, Li B, Toledo EM, Rivetti di Val Cervo P, Yang S, Stott SR, Kaiser K, Islam S, Gyllborg D, Laguna-Goya R, Landreh M, Lonnerberg P, Falk A, Bergman T, Barker RA, Linnarsson S, Selleri L, Arenas E (2016) A PBX1 transcriptional network controls dopaminergic neuron development and is impaired in Parkinson’s disease. The EMBO journal 35 (18):1963–1978. doi:10.15252/embj.201593725 PubMed DOI PMC

Janda CY, Li J, Oubridge C, Hernandez H, Robinson CV, Nagai K (2010) Recognition of a signal peptide by the signal recognition particle. Nature 465 (7297):507–510. doi:10.1038/nature08870 PubMed DOI PMC

Morrish F, Giedt C, Hockenbery D (2003) c-MYC apoptotic function is mediated by NRF-1 target genes. Genes & development 17 (2):240–255. doi:10.1101/gad.1032503 PubMed DOI PMC

Morikawa M, Koinuma D, Tsutsumi S, Vasilaki E, Kanki Y, Heldin CH, Aburatani H, Miyazono K (2011) ChIP-seq reveals cell type-specific binding patterns of BMP-specific Smads and a novel binding motif. Nucleic acids research 39 (20):8712–8727. doi:10.1093/nar/gkr572 PubMed DOI PMC

Gertz J, Reddy TE, Varley KE, Garabedian MJ, Myers RM (2012) Genistein and bisphenol A exposure cause estrogen receptor 1 to bind thousands of sites in a cell type-specific manner. Genome research 22 (11):2153–2162. doi:10.1101/gr.135681.111 PubMed DOI PMC

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...