The dopamine transporter gene SLC6A3: multidisease risks
Jazyk angličtina Země Velká Británie, Anglie Médium print-electronic
Typ dokumentu časopisecké články, Research Support, N.I.H., Extramural
Grantová podpora
R01 DA021409
NIDA NIH HHS - United States
R01 DA035263
NIDA NIH HHS - United States
R01 DA038058
NIDA NIH HHS - United States
R21 AA026663
NIAAA NIH HHS - United States
PubMed
34650206
PubMed Central
PMC9008071
DOI
10.1038/s41380-021-01341-5
PII: 10.1038/s41380-021-01341-5
Knihovny.cz E-zdroje
- MeSH
- fenotyp MeSH
- haplotypy MeSH
- hyperkinetická porucha * genetika MeSH
- lidé MeSH
- mutace MeSH
- proteiny přenášející dopamin přes plazmatickou membránu * genetika metabolismus MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- Research Support, N.I.H., Extramural MeSH
- Názvy látek
- proteiny přenášející dopamin přes plazmatickou membránu * MeSH
- SLC6A3 protein, human MeSH Prohlížeč
The human dopamine transporter gene SLC6A3 has been consistently implicated in several neuropsychiatric diseases but the disease mechanism remains elusive. In this risk synthesis, we have concluded that SLC6A3 represents an increasingly recognized risk with a growing number of familial mutants associated with neuropsychiatric and neurological disorders. At least five loci were related to common and severe diseases including alcohol use disorder (high activity variant), attention-deficit/hyperactivity disorder (low activity variant), autism (familial proteins with mutated networking) and movement disorders (both regulatory variants and familial mutations). Association signals depended on genetic markers used as well as ethnicity examined. Strong haplotype selection and gene-wide epistases support multimarker assessment of functional variations and phenotype associations. Inclusion of its promoter region's functional markers such as DNPi (rs67175440) and 5'VNTR (rs70957367) may help delineate condensate-based risk action, testing a locus-pathway-phenotype hypothesis for one gene-multidisease etiology.
Department of Psychiatry New York University School of Medicine New York City NY 10016 USA
Department of Surgery University of Alabama at Birmingham Birmingham AL 35294 USA
Laboratory of Neuroimaging National Institute on Alcohol Abuse and Alcoholism Bethesda MD 20817 USA
Zobrazit více v PubMed
Juarez EJ, Samanez-Larkin GR. Exercise, dopamine, and cognition in older age. Trends Cogn Sci. 2019;23:986–8. doi: 10.1016/j.tics.2019.10.006. PubMed DOI
Coddington LT, Dudman JT. Learning from action: reconsidering movement signaling in midbrain dopamine neuron activity. Neuron. 2019;104:63–77. doi: 10.1016/j.neuron.2019.08.036. PubMed DOI
Bamford NS, Wightman RM, Sulzer D. Dopamine’s effects on corticostriatal synapses during reward-based behaviors. Neuron. 2018;97:494–510. doi: 10.1016/j.neuron.2018.01.006. PubMed DOI PMC
Burke CJ, Tobler PN. Time, not size, matters for striatal reward predictions to dopamine. Neuron. 2016;91:8–11. doi: 10.1016/j.neuron.2016.06.029. PubMed DOI
Satterfield BC, Wisor JP, Schmidt M, Van Dongen HPA. Time-on-task effect during sleep deprivation in healthy young adults is modulated by dopamine transporter genotype. Sleep. 2017;40:zsx167. doi: 10.1093/sleep/zsx167. PubMed DOI PMC
Bauckneht M, Chincarini A, De Carli F, Terzaghi M, Morbelli S, Nobili F, et al. Presynaptic dopaminergic neuroimaging in REM sleep behavior disorder: a systematic review and meta-analysis. Sleep Med Rev. 2018;41:266–74. doi: 10.1016/j.smrv.2018.04.001. PubMed DOI
Meng F, Guo Z, Hu Y, Mai W, Zhang Z, Zhang B, et al. CD73-derived adenosine controls inflammation and neurodegeneration by modulating dopamine signalling. Brain: a J Neurol. 2019;142:700–18. doi: 10.1093/brain/awy351. PubMed DOI
Wu Y, Hu Y, Wang B, Li S, Ma C, Liu X, et al. Dopamine uses the DRD5-ARRB2-PP2A signaling axis to block the TRAF6-mediated NF-κB pathway and suppress systemic inflammation. Mol Cell. 2020;78:42–56.e46. doi: 10.1016/j.molcel.2020.01.022. PubMed DOI
Gaweda G, Iyer RP, Shaver PR, Grilo GA, Dinkins ML, Stoffel HJ, et al. Dopamine receptor D3 agonist (Pramipexole) reduces morphine-induced cardiac fibrosis. Biochemical biophysical Res Commun. 2020;529:1080–5. doi: 10.1016/j.bbrc.2020.06.137. PubMed DOI
Wan SH, Stevens SR, Borlaug BA, Anstrom KJ, Deswal A, Felker GM, et al. Differential response to low-dose dopamine or low-dose nesiritide in acute heart failure with reduced or preserved ejection fraction: results from the ROSE AHF Trial (renal optimization strategies evaluation in acute heart failure) Circ Heart Fail. 2016;9:e002593. doi: 10.1161/CIRCHEARTFAILURE.115.002593. PubMed DOI PMC
Wang PS, Walker AM, Tsuang MT, Orav EJ, Glynn RJ, Levin R, et al. Dopamine antagonists and the development of breast cancer. Arch Gen Psychiatry. 2002;59:1147–54. doi: 10.1001/archpsyc.59.12.1147. PubMed DOI
Weissenrieder JS, Neighbors JD, Mailman RB, Hohl RJ. Cancer and the dopamine D(2) receptor: a pharmacological perspective. J Pharmacol Exp Therapeutics. 2019;370:111–26. doi: 10.1124/jpet.119.256818. PubMed DOI PMC
Sachlos E, Risueño RM, Laronde S, Shapovalova Z, Lee JH, Russell J, et al. Identification of drugs including a dopamine receptor antagonist that selectively target cancer stem cells. Cell. 2012;149:1284–97. doi: 10.1016/j.cell.2012.03.049. PubMed DOI
Miller D, Guenther DT, Maurer AP, Hansen CA, Zalesky A, Khoshbouei H. Dopamine transporter is a master regulator of dopaminergic neural network connectivity. J Neurosci: the official journal of the Society for Neuroscience 2021:1:5453–70. PubMed PMC
Salatino-Oliveira A, Rohde LA, Hutz MH. The dopamine transporter role in psychiatric phenotypes. Am J Med Genet Part B, Neuropsychiatr Genet: Off Publ Int Soc Psychiatr Genet. 2018;177:211–31. doi: 10.1002/ajmg.b.32578. PubMed DOI
Fang Y, Ronnekleiv OK. Cocaine upregulates the dopamine transporter in fetal rhesus monkey brain. J Neurosci: Off J Soc Neurosci. 1999;19:8966–78. doi: 10.1523/JNEUROSCI.19-20-08966.1999. PubMed DOI PMC
Letchworth SR, Sexton T, Childers SR, Vrana KE, Vaughan RA, Davies HM, et al. Regulation of rat dopamine transporter mRNA and protein by chronic cocaine administration. J Neurochemistry. 1999;73:1982–9. PubMed
Letchworth SR, Daunais JB, Hedgecock AA, Porrino LJ. Effects of chronic cocaine administration on dopamine transporter mRNA and protein in the rat. Brain Res. 1997;750:214–22. doi: 10.1016/S0006-8993(96)01384-4. PubMed DOI
Filipenko ML, Alekseyenko OV, Beilina AG, Kamynina TP, Kudryavtseva NN. Increase of tyrosine hydroxylase and dopamine transporter mRNA levels in ventral tegmental area of male mice under influence of repeated aggression experience. Brain Res Mol Brain Res. 2001;96:77–81. doi: 10.1016/S0169-328X(01)00270-4. PubMed DOI
Redina O, Babenko V, Smagin D, Kovalenko I, Galyamina A, Efimov V, et al. Gene exprbession changes in the ventral tegmental area of male mice with alternative social behavior experience in chronic agonistic interactions. Int J Mol Sci. 2020;21:6599. doi: 10.3390/ijms21186599. PubMed DOI PMC
Ong ZY, Muhlhausler BS. Maternal “junk-food” feeding of rat dams alters food choices and development of the mesolimbic reward pathway in the offspring. FASEB J: Off Publ Federation Am Societies Exp Biol. 2011;25:2167–79. doi: 10.1096/fj.10-178392. PubMed DOI PMC
Yuan ZY, Gu P, Liu L, Wang YY, Liu J, Cui DS, et al. Neuroprotective effects of enriched environment in MPTP-treated SAMP8 mice. Neurosci Lett. 2009;454:6–10. doi: 10.1016/j.neulet.2009.02.058. PubMed DOI
Amato D, Canneva F, Cumming P, Maschauer S, Groos D, Dahlmanns JK, et al. A dopaminergic mechanism of antipsychotic drug efficacy, failure, and failure reversal: the role of the dopamine transporter. Mol Psychiatr. 2020;25:2101–18. doi: 10.1038/s41380-018-0114-5. PubMed DOI PMC
Sheng Y, Filichia E, Shick E, Preston KL, Phillips KA, Cooperman L, et al. Using iPSC-derived human DA neurons from opioid-dependent subjects to study dopamine dynamics. Brain Behav. 2016;6:e00491. doi: 10.1002/brb3.491. PubMed DOI PMC
Figlewicz DP, Szot P, Chavez M, Woods SC, Veith RC. Intraventricular insulin increases dopamine transporter mRNA in rat VTA/substantia nigra. Brain Res. 1994;644:331–4. doi: 10.1016/0006-8993(94)91698-5. PubMed DOI
Wiers CE, Lohoff FW, Lee J, Muench C, Freeman C, Zehra A, et al. Methylation of the dopamine transporter gene in blood is associated with striatal dopamine transporter availability in ADHD: a preliminary study. Eur J Neurosci. 2018;48:1884–95. doi: 10.1111/ejn.14067. PubMed DOI PMC
Shumay E, Fowler JS, Volkow ND. Genomic features of the human dopamine transporter gene and its potential epigenetic States: implications for phenotypic diversity. PloS ONE. 2010;5:e11067. doi: 10.1371/journal.pone.0011067. PubMed DOI PMC
Hochstatter KR, Hull SJ, Sethi AK, Burns ME, Mundt MP, Westergaard RP. Promoting safe injection practices, substance use reduction, hepatitis C testing, and overdose prevention among syringe service program clients using a computer-tailored intervention: pilot randomized controlled trial. J Med Internet Res. 2020;22:e19703. doi: 10.2196/19703. PubMed DOI PMC
Westergaard RP, Hull SJ, Merkow A, Stephens LK, Hochstatter KR, Olson-Streed HK, et al. Computerized tailored interventions to enhance prevention and screening for hepatitis C virus among people who inject drugs: protocol for a randomized pilot study. JMIR Res Protoc. 2016;5:e15. doi: 10.2196/resprot.4830. PubMed DOI PMC
Xiong N, Schiller MR, Li J, Chen X, Lin Z. Severe COVID-19 in Alzheimer’s disease: APOE4’s fault again? Alzheimer’s Res Ther. 2021;13:111. doi: 10.1186/s13195-021-00858-9. PubMed DOI PMC
Wang KH, Penmatsa A, Gouaux E. Neurotransmitter and psychostimulant recognition by the dopamine transporter. Nature. 2015;521:322–7. doi: 10.1038/nature14431. PubMed DOI PMC
Aggarwal S, Liu X, Rice C, Menell P, Clark PJ, Paparoidamis N, et al. Identification of a novel allosteric modulator of the human dopamine transporter. ACS Chem Neurosci. 2019;10:3718–30. doi: 10.1021/acschemneuro.9b00262. PubMed DOI PMC
Sudmant PH, Rausch T, Gardner EJ, Handsaker RE, Abyzov A, Huddleston J, et al. An integrated map of structural variation in 2504 human genomes. Nature. 2015;526:75–81. doi: 10.1038/nature15394. PubMed DOI PMC
Gao F, Ming C, Hu W, Li H. New software for the fast estimation of population recombination rates (FastEPRR) in the Genomic Era. G3 (Bethesda, Md) 2016;6:1563–71. doi: 10.1534/g3.116.028233. PubMed DOI PMC
Wang GJ, Volkow ND, Wigal T, Kollins SH, Newcorn JH, Telang F, et al. Long-term stimulant treatment affects brain dopamine transporter level in patients with attention deficit hyperactive disorder. PloS ONE. 2013;8:e63023. doi: 10.1371/journal.pone.0063023. PubMed DOI PMC
Volkow ND, Wang GJ, Fowler JS, Logan J, Franceschi D, Maynard L, et al. Relationship between blockade of dopamine transporters by oral methylphenidate and the increases in extracellular dopamine: therapeutic implications. Synapse. 2002;43:181–7. doi: 10.1002/syn.10038. PubMed DOI
Fowler JS, Volkow ND, Wang GJ, Gatley SJ, Logan J. [(11)]Cocaine: PET studies of cocaine pharmacokinetics, dopamine transporter availability and dopamine transporter occupancy. Nucl Med Biol. 2001;28:561–72. doi: 10.1016/S0969-8051(01)00211-6. PubMed DOI
Zhou Y, Michelhaugh SK, Schmidt CJ, Liu JS, Bannon MJ, Lin Z. Ventral midbrain correlation between genetic variation and expression of the dopamine transporter gene in cocaine-abusing versus non-abusing subjects. Addiction Biol. 2014;19:122–31. doi: 10.1111/j.1369-1600.2011.00391.x. PubMed DOI PMC
Li Z, Zhang Z, He Z, Tang W, Li T, Zeng Z, et al. A partition-ligation-combination-subdivision EM algorithm for haplotype inference with multiallelic markers: update of the SHEsis. Cell Res. 2009;19:519–23. doi: 10.1038/cr.2009.33. PubMed DOI
Kennedy JL, Xiong N, Yu J, Zai CC, Pouget JG, Li J, et al. Increased Nigral SLC6A3 activity in schizophrenia patients: findings from the toronto-McLean Cohorts. Schizophr Bull. 2016;42:772–81. doi: 10.1093/schbul/sbv191. PubMed DOI PMC
Thompson JD, Gibson TJ, Higgins DG. Multiple sequence alignment using ClustalW and ClustalX. Current protocols in bioinformatics 2002; Chapter 2: Unit 2.3. PubMed
Page RD. TreeView: an application to display phylogenetic trees on personal computers. Computer Appl Biosci: CABIOS. 1996;12:357–8. PubMed
Liu K, Zhao J, Chen C, Xu J, Bell RL, Hall FS, et al. Epistatic evidence for gender-dependant slow neurotransmission signalling in substance use disorders: PPP1R12B versus PPP1R1B. EBioMedicine. 2020;61:103066. doi: 10.1016/j.ebiom.2020.103066. PubMed DOI PMC
Necci M, Piovesan D, Clementel D, Dosztányi Z, Tosatto SCE. MobiDB-lite 3.0: fast consensus annotation of intrinsic disorder flavours in proteins. Bioinformatics (Oxford, England) 2020. PubMed
Kurian MA. SLC6A3-Related Dopamine Transporter Deficiency Syndrome. In: Adam MP, Ardinger HH, Pagon RA, Wallace SE, Bean LJH, Stephens K, et al. (eds). GeneReviews(®). University of Washington, Seattle Copyright© 1993-2020, University of Washington, Seattle. GeneReviews is a registered trademark of the University of Washington, Seattle. All rights reserved.: Seattle (WA), 1993.
Kurian MA, Li Y, Zhen J, Meyer E, Hai N, Christen HJ, et al. Clinical and molecular characterisation of hereditary dopamine transporter deficiency syndrome: an observational cohort and experimental study. Lancet Neurol. 2011;10:54–62. doi: 10.1016/S1474-4422(10)70269-6. PubMed DOI PMC
Kurian MA, Zhen J, Cheng SY, Li Y, Mordekar SR, Jardine P, et al. Homozygous loss-of-function mutations in the gene encoding the dopamine transporter are associated with infantile parkinsonism-dystonia. J Clin Investig. 2009;119:1595–603. PubMed PMC
Ng J, Zhen J, Meyer E, Erreger K, Li Y, Kakar N, et al. Dopamine transporter deficiency syndrome: phenotypic spectrum from infancy to adulthood. Brain: J Neurol. 2014;137:1107–19. doi: 10.1093/brain/awu022. PubMed DOI PMC
Baga M, Spagnoli C, Soliani L, Salerno GG, Rizzi S, Frattini D, et al. Early-onset dopamine transporter deficiency syndrome: long-term follow-up. Can J Neurol Sci Le journal canadien des sciences neurologiques. 2021;48:285–6. doi: 10.1017/cjn.2020.144. PubMed DOI
Heidari E, Razmara E, Hosseinpour S, Tavasoli AR, Garshasbi M. Homozygous in-frame variant of SCL6A3 causes dopamine transporter deficiency syndrome in a consanguineous family. Ann Hum Genet. 2020;84:315–23. doi: 10.1111/ahg.12378. PubMed DOI
Nasehi MM, Nikkhah A, Salari M, Soltani P, Shirzadi S. Dopamine transporter deficiency syndrome: a case with hyper- and hypokinetic extremes. Mov Disord Clin Pract. 2020;7:S57–60. doi: 10.1002/mdc3.13064. PubMed DOI PMC
Campbell NG, Shekar A, Aguilar JI, Peng D, Navratna V, Yang D, et al. Structural, functional, and behavioral insights of dopamine dysfunction revealed by a deletion in SLC6A3. Proc Natl Acad Sci USA. 2019;116:3853–62. doi: 10.1073/pnas.1816247116. PubMed DOI PMC
Reith MEA, Jones KT, Zhen J, Topiol S. Latch and trigger role for R445 in DAT transport explains molecular basis of DTDS. Bioorg Medicinal Chem Lett. 2018;28:470–5. doi: 10.1016/j.bmcl.2017.12.016. PubMed DOI PMC
Hansen FH, Skjørringe T, Yasmeen S, Arends NV, Sahai MA, Erreger K, et al. Missense dopamine transporter mutations associate with adult parkinsonism and ADHD. The. J Clin Investig. 2014;124:3107–20. doi: 10.1172/JCI73778. PubMed DOI PMC
Herborg F, Andreassen TF, Berlin F, Loland CJ, Gether U. Neuropsychiatric disease-associated genetic variants of the dopamine transporter display heterogeneous molecular phenotypes. J Biol Chem. 2018;293:7250–62. doi: 10.1074/jbc.RA118.001753. PubMed DOI PMC
DiCarlo GE, Aguilar JI, Matthies HJ, Harrison FE, Bundschuh KE, West A, et al. Autism-linked dopamine transporter mutation alters striatal dopamine neurotransmission and dopamine-dependent behaviors. J Clin Investig. 2019;129:3407–19. doi: 10.1172/JCI127411. PubMed DOI PMC
Hamilton PJ, Campbell NG, Sharma S, Erreger K, Herborg Hansen F, Saunders C, et al. De novo mutation in the dopamine transporter gene associates dopamine dysfunction with autism spectrum disorder. Mol Psychiatry. 2013;18:1315–23. doi: 10.1038/mp.2013.102. PubMed DOI PMC
Sakrikar D, Mazei-Robison MS, Mergy MA, Richtand NW, Han Q, Hamilton PJ, et al. Attention deficit/hyperactivity disorder-derived coding variation in the dopamine transporter disrupts microdomain targeting and trafficking regulation. J Neurosci: Off J Soc Neurosci. 2012;32:5385–97. doi: 10.1523/JNEUROSCI.6033-11.2012. PubMed DOI PMC
Herborg F, Jensen KL, Tolstoy S, Arends NV, Posselt LP, Shekar A, et al. Identifying dominant-negative actions of a dopamine transporter variant in patients with parkinsonism and neuropsychiatric disease. JCI Insight. 2021;16:e151496. doi: 10.1172/jci.insight.151496. PubMed DOI PMC
Bowton E, Saunders C, Reddy IA, Campbell NG, Hamilton PJ, Henry LK, et al. SLC6A3 coding variant Ala559Val found in two autism probands alters dopamine transporter function and trafficking. Transl Psychiatry. 2014;4:e464. doi: 10.1038/tp.2014.90. PubMed DOI PMC
Mazei-Robison MS, Bowton E, Holy M, Schmudermaier M, Freissmuth M, Sitte HH, et al. Anomalous dopamine release associated with a human dopamine transporter coding variant. J Neurosci: Off J Soc Neurosci. 2008;28:7040–6. doi: 10.1523/JNEUROSCI.0473-08.2008. PubMed DOI PMC
Horschitz S, Hummerich R, Lau T, Rietschel M, Schloss P. A dopamine transporter mutation associated with bipolar affective disorder causes inhibition of transporter cell surface expression. Mol Psychiatry. 2005;10:1104–9. doi: 10.1038/sj.mp.4001730. PubMed DOI
Cartier E, Hamilton PJ, Belovich AN, Shekar A, Campbell NG, Saunders C, et al. Rare autism-associated variants implicate syntaxin 1 (STX1 R26Q) phosphorylation and the dopamine transporter (hDAT R51W) in dopamine neurotransmission and behaviors. EBioMedicine. 2015;2:135–46. doi: 10.1016/j.ebiom.2015.01.007. PubMed DOI PMC
Grünhage F, Schulze TG, Müller DJ, Lanczik M, Franzek E, Albus M, et al. Systematic screening for DNA sequence variation in the coding region of the human dopamine transporter gene (DAT1) Mol Psychiatry. 2000;5:275–82. doi: 10.1038/sj.mp.4000711. PubMed DOI
Kovtun O, Sakrikar D, Tomlinson ID, Chang JC, Arzeta-Ferrer X, Blakely RD, et al. Single-quantum-dot tracking reveals altered membrane dynamics of an attention-deficit/hyperactivity-disorder-derived dopamine transporter coding variant. ACS Chem Neurosci. 2015;6:526–34. doi: 10.1021/cn500202c. PubMed DOI PMC
Rojas G, Orellana I, Rosales-Rojas R, García-Olivares J, Comer J, Vergara-Jaque A. Structural determinants of the dopamine transporter regulation mediated by G proteins. J Chem Inf Modeling. 2020;60:3577–86. doi: 10.1021/acs.jcim.0c00236. PubMed DOI
Cervinski MA, Foster JD, Vaughan RA. Syntaxin 1A regulates dopamine transporter activity, phosphorylation and surface expression. Neuroscience. 2010;170:408–16. doi: 10.1016/j.neuroscience.2010.07.025. PubMed DOI PMC
Biological insights from 108 schizophrenia-associated genetic loci. Nature 2014;41:5453–70. PubMed PMC
Demontis D, Walters RK, Martin J, Mattheisen M, Als TD, Agerbo E, et al. Discovery of the first genome-wide significant risk loci for attention deficit/hyperactivity disorder. Nat Genet. 2019;51:63–75. doi: 10.1038/s41588-018-0269-7. PubMed DOI PMC
Sanchez-Roige S, Palmer AA, Fontanillas P, Elson SL, Adams MJ, Howard DM, et al. Genome-wide association study meta-analysis of the alcohol use disorders identification test (AUDIT) in two population-based cohorts. Am J Psychiatry. 2019;176:107–18. doi: 10.1176/appi.ajp.2018.18040369. PubMed DOI PMC
Ma Y, Fan R, Li MD. Meta-analysis reveals significant association of the 3’-UTR VNTR in SLC6A3 with alcohol dependence. Alcohol Clin Exp Res. 2016;40:1443–53. doi: 10.1111/acer.13104. PubMed DOI PMC
Kibitov AO, Ivashchenko DV, Brodyansky VM, Chuprova NA, Shuvalov SA. [Combination of DAT and DBH gene polymorphisms with a family history of alcohol use disorders increases the risk of withdrawal seizures and delirium tremens during alcohol withdrawal in alcohol-dependent men]. Zhurnal nevrologii i psikhiatrii imeni SS Korsakova. 2016;116:68–80. PubMed
Schacht JP, Anton RF, McNamara PJ, Im Y, King AC. The dopamine transporter VNTR polymorphism moderates the relationship between acute response to alcohol and future alcohol use disorder symptoms. Addiction Biol. 2019;24:1109–18. doi: 10.1111/adb.12676. PubMed DOI
Ma Y, Yuan W, Cui W, Li MD. Meta-analysis reveals significant association of 3’-UTR VNTR in SLC6A3 with smoking cessation in Caucasian populations. Pharmacogenomics J. 2016;16:10–17. doi: 10.1038/tpj.2015.44. PubMed DOI PMC
Li S, Wang Q, Pan L, Li H, Yang X, Jiang F, et al. The association of dopamine pathway gene score, nicotine dependence and smoking cessation in a rural male population of Shandong, China. Am J Addictions. 2016;25:493–8. doi: 10.1111/ajad.12421. PubMed DOI
Tiili EM, Mitiushkina NV, Sukhovskaya OA, Imyanitov EN, Hirvonen AP. The effect of SLC6A3 variable number of tandem repeats and methylation levels on individual susceptibility to start tobacco smoking and on the ability of smokers to quit smoking. Pharmacogenetics Genomics. 2020;30:117–23. doi: 10.1097/FPC.0000000000000403. PubMed DOI
Grünblatt E, Werling AM, Roth A, Romanos M, Walitza S. Association study and a systematic meta-analysis of the VNTR polymorphism in the 3’-UTR of dopamine transporter gene and attention-deficit hyperactivity disorder. J Neural Transm (Vienna, Austria: 1996) 2019;126:517–29. doi: 10.1007/s00702-019-01998-x. PubMed DOI PMC
Li L, Bao Y, He S, Wang G, Guan Y, Ma D, et al. The Association between genetic variants in the dopaminergic system and posttraumatic stress disorder: a meta-analysis. Medicine. 2016;95:e3074. doi: 10.1097/MD.0000000000003074. PubMed DOI PMC
Bieliński M, Jaracz M, Lesiewska N, Tomaszewska M, Sikora M, Junik R, et al. Association between COMT Val158Met and DAT1 polymorphisms and depressive symptoms in the obese population. Neuropsychiatr Dis Treat. 2017;13:2221–9. doi: 10.2147/NDT.S138565. PubMed DOI PMC
López-León S, Janssens AC, González-Zuloeta Ladd AM, Del-Favero J, Claes SJ, Oostra BA, et al. Meta-analyses of genetic studies on major depressive disorder. Mol Psychiatry. 2008;13:772–85. doi: 10.1038/sj.mp.4002088. PubMed DOI
Xu FL, Ding M, Wu X, Liu YP, Xia X, Yao J, et al. A Meta-analysis of the Association between SLC6A3 gene polymorphisms and schizophrenia. J Mol Neurosci: MN. 2020;70:155–66. doi: 10.1007/s12031-019-01399-5. PubMed DOI
Rhodes JA, Lane JM, Vlasac IM, Rutter MK, Czeisler CA, Saxena R. Association of DAT1 genetic variants with habitual sleep duration in the UK Biobank. Sleep. 2019;42:zsy193. doi: 10.1093/sleep/zsy193. PubMed DOI PMC
Zhai D, Li S, Zhao Y, Lin Z. SLC6A3 is a risk factor for Parkinson’s disease: a meta-analysis of sixteen years’ studies. Neurosci Lett. 2014;564:99–104. doi: 10.1016/j.neulet.2013.10.060. PubMed DOI PMC
van Munster BC, Yazdanpanah M, Tanck MW, de Rooij SE, van de Giessen E, Sijbrands EJ, et al. Genetic polymorphisms in the DRD2, DRD3, and SLC6A3 gene in elderly patients with delirium. Am J Med Genet Part B, Neuropsychiatr Genet: Off Publ Int Soc Psychiatr Genet. 2010;153b:38–45. PubMed
van Munster BC, de Rooij S, Yazdanpanah M, Tienari PJ, Pitkälä KH, Osse RJ, et al. The association of the dopamine transporter gene and the dopamine receptor 2 gene with delirium, a meta-analysis. Am J Med Genet Part B, Neuropsychiatr Genet: Off Publ Int Soc Psychiatr Genet. 2010;153b:648–55. doi: 10.1002/ajmg.b.31034. PubMed DOI
Pinsonneault JK, Han DD, Burdick KE, Kataki M, Bertolino A, Malhotra AK, et al. Dopamine transporter gene variant affecting expression in human brain is associated with bipolar disorder. Neuropsychopharmacol: Off Publ Am Coll Neuropsychopharmacol. 2011;36:1644–55. doi: 10.1038/npp.2011.45. PubMed DOI PMC
Myer NM, Boland JR, Faraone SV. Pharmacogenetics predictors of methylphenidate efficacy in childhood ADHD. Mol Psychiatry. 2018;23:1929–36. doi: 10.1038/mp.2017.234. PubMed DOI PMC
Guin D, Mishra MK, Talwar P, Rawat C, Kushwaha SS, Kukreti S, et al. A systematic review and integrative approach to decode the common molecular link between levodopa response and Parkinson’s disease. BMC Med Genomics. 2017;10:56. doi: 10.1186/s12920-017-0291-0. PubMed DOI PMC
Politi C, Ciccacci C, Novelli G, Borgiani P. Genetics and treatment response in Parkinson’s disease: an update on pharmacogenetic studies. Neuromolecular Med. 2018;20:1–17. doi: 10.1007/s12017-017-8473-7. PubMed DOI
Kaplan N, Vituri A, Korczyn AD, Cohen OS, Inzelberg R, Yahalom G, et al. Sequence variants in SLC6A3, DRD2, and BDNF genes and time to levodopa-induced dyskinesias in Parkinson’s disease. J Mol Neurosci: MN. 2014;53:183–8. doi: 10.1007/s12031-014-0276-9. PubMed DOI
Purcaro C, Vanacore N, Moret F, Di Battista ME, Rubino A, Pierandrei S, et al. DAT gene polymorphisms (rs28363170, rs393795) and levodopa-induced dyskinesias in Parkinson’s disease. Neurosci Lett. 2019;690:83–8. doi: 10.1016/j.neulet.2018.10.021. PubMed DOI
Redenšek S, Flisar D, Kojović M, Gregorič Kramberger M, Georgiev D, Pirtošek Z, et al. Dopaminergic pathway genes influence adverse events related to dopaminergic treatment in Parkinson’s Disease. Front Pharmacol. 2019;10:8. doi: 10.3389/fphar.2019.00008. PubMed DOI PMC
Fuke S, Suo S, Takahashi N, Koike H, Sasagawa N, Ishiura S. The VNTR polymorphism of the human dopamine transporter (DAT1) gene affects gene expression. Pharmacogenomics J. 2001;1:152–6. doi: 10.1038/sj.tpj.6500026. PubMed DOI
Mill J, Asherson P, Craig I, D’Souza UM. Transient expression analysis of allelic variants of a VNTR in the dopamine transporter gene (DAT1) BMC Genet. 2005;6:3. doi: 10.1186/1471-2156-6-3. PubMed DOI PMC
VanNess SH, Owens MJ, Kilts CD. The variable number of tandem repeats element in DAT1 regulates in vitro dopamine transporter density. BMC Genet. 2005;6:55. doi: 10.1186/1471-2156-6-55. PubMed DOI PMC
Faraone SV, Spencer TJ, Madras BK, Zhang-James Y, Biederman J. Functional effects of dopamine transporter gene genotypes on in vivo dopamine transporter functioning: a meta-analysis. Mol Psychiatry. 2014;19:880–9. doi: 10.1038/mp.2013.126. PubMed DOI
Hill M, Anney RJ, Gill M, Hawi Z. Functional analysis of intron 8 and 3’ UTR variable number of tandem repeats of SLC6A3: differential activity of intron 8 variants. Pharmacogenomics J. 2010;10:442–7. doi: 10.1038/tpj.2009.66. PubMed DOI
Guindalini C, Howard M, Haddley K, Laranjeira R, Collier D, Ammar N, et al. A dopamine transporter gene functional variant associated with cocaine abuse in a Brazilian sample. Proc Natl Acad Sci USA. 2006;103:4552–7. doi: 10.1073/pnas.0504789103. PubMed DOI PMC
Shumay E, Chen J, Fowler JS, Volkow ND. Genotype and ancestry modulate brain’s DAT availability in healthy humans. PloS ONE. 2011;6:e22754. doi: 10.1371/journal.pone.0022754. PubMed DOI PMC
Zhao Y, Xiong N, Liu Y, Zhou Y, Li N, Qing H, et al. Human dopamine transporter gene: differential regulation of 18-kb haplotypes. Pharmacogenomics. 2013;14:1481–94. doi: 10.2217/pgs.13.141. PubMed DOI PMC
Zhao J, Zhou Y, Xiong N, Qing H, Wang T, Lin Z. Presence of recombination hotspots throughout SLC6A3. PloS ONE. 2019;14:e0218129. doi: 10.1371/journal.pone.0218129. PubMed DOI PMC
Liu K, Yu J, Zhao J, Zhou Y, Xiong N, Xu J, et al. (AZI2)3’UTR Is a New SLC6A3 downregulator associated with an epistatic protection against substance use disorders. Mol Neurobiol. 2018;55:5611–22. doi: 10.1007/s12035-017-0781-2. PubMed DOI PMC
Savelieva KV, Caudle WM, Findlay GS, Caron MG, Miller GW. Decreased ethanol preference and consumption in dopamine transporter female knock-out mice. Alcohol Clin Exp Res. 2002;26:758–64. doi: 10.1111/j.1530-0277.2002.tb02602.x. PubMed DOI
Song R, Zhang HY, Li X, Bi GH, Gardner EL, Xi ZX. Increased vulnerability to cocaine in mice lacking dopamine D3 receptors. Proc Natl Acad Sci U.S.A. 2012;109:17675–80. doi: 10.1073/pnas.1205297109. PubMed DOI PMC
Liu K, Yu J, Zhao J, Zhou Y, Xiong N, Xu J, et al. (AZI2)3’UTR Is a New SLC6A3 downregulator associated with an epistatic protection against substance use disorders. Mol Neurobiol. 2018;55:5611–22. doi: 10.1007/s12035-017-0781-2. PubMed DOI PMC
Liu QR, Canseco-Alba A, Zhang HY, Tagliaferro P, Chung M, Dennis E, et al. Cannabinoid type 2 receptors in dopamine neurons inhibits psychomotor behaviors, alters anxiety, depression and alcohol preference. Sci Rep. 2017;7:17410. doi: 10.1038/s41598-017-17796-y. PubMed DOI PMC
Diana M. The dopamine hypothesis of drug addiction and its potential therapeutic value. Front Psychiatry. 2011;2:64. doi: 10.3389/fpsyt.2011.00064. PubMed DOI PMC
Martinez D, Greene K, Broft A, Kumar D, Liu F, Narendran R, et al. Lower level of endogenous dopamine in patients with cocaine dependence: findings from PET imaging of D(2)/D(3) receptors following acute dopamine depletion. Am J Psychiatry. 2009;166:1170–7. doi: 10.1176/appi.ajp.2009.08121801. PubMed DOI PMC
Pickens CL, Calu DJ. Alcohol reward, dopamine depletion, and GDNF. J Neurosci. 2011;31:14833–4. doi: 10.1523/JNEUROSCI.4222-11.2011. PubMed DOI PMC
Dackis CA, Gold MS. New concepts in cocaine addiction: the dopamine depletion hypothesis. Neurosci Biobehav Rev. 1985;9:469–77. doi: 10.1016/0149-7634(85)90022-3. PubMed DOI
Copeland BJ, Neff NH, Hadjiconstantinou M. Enhanced dopamine uptake in the striatum following repeated restraint stress. Synapse. 2005;57:167–74. doi: 10.1002/syn.20169. PubMed DOI
Li S, Kim KY, Kim JH, Kim JH, Park MS, Bahk JY, et al. Chronic nicotine and smoking treatment increases dopamine transporter mRNA expression in the rat midbrain. Neurosci Lett. 2004;363:29–32. doi: 10.1016/j.neulet.2004.03.053. PubMed DOI
Hadjiconstantinou M, Duchemin AM, Zhang H, Neff NH. Enhanced dopamine transporter function in striatum during nicotine withdrawal. Synap (N. Y, NY) 2011;65:91–8. doi: 10.1002/syn.20820. PubMed DOI
Taylor M, Collin SM, Munafò MR, MacLeod J, Hickman M, Heron J. Patterns of cannabis use during adolescence and their association with harmful substance use behaviour: findings from a UK birth cohort. J Epidemiol Community Health. 2017;71:764–70. doi: 10.1136/jech-2016-208503. PubMed DOI PMC
Thrul J, Rabinowitz JA, Reboussin BA, Maher BS, Ialongo NS. Adolescent cannabis and tobacco use are associated with opioid use in young adulthood-12-year longitudinal study in an urban cohort. Addiction (Abingdon, England) 2020. PubMed PMC
Williams AR. Cannabis as a gateway drug for opioid use disorder. J Law Med Ethics: a J Am Soc Law Med Ethics. 2020;48:268–74. doi: 10.1177/1073110520935338. PubMed DOI PMC
Pistis M, Perra S, Pillolla G, Melis M, Muntoni AL, Gessa GL. Adolescent exposure to cannabinoids induces long-lasting changes in the response to drugs of abuse of rat midbrain dopamine neurons. Biol Psychiatry. 2004;56:86–94. doi: 10.1016/j.biopsych.2004.05.006. PubMed DOI
Zhang HY, Gao M, Liu QR, Bi GH, Li X, Yang HJ, et al. Cannabinoid CB2 receptors modulate midbrain dopamine neuronal activity and dopamine-related behavior in mice. Proc Natl Acad Sci USA. 2014;111:E5007–15. PubMed PMC
Canseco-Alba A, Schanz N, Sanabria B, Zhao J, Lin Z, Liu QR, et al. Behavioral effects of psychostimulants in mutant mice with cell-type specific deletion of CB2 cannabinoid receptors in dopamine neurons. Behavioural Brain Res. 2019;360:286–97. doi: 10.1016/j.bbr.2018.11.043. PubMed DOI PMC
Pizzagalli DA, Berretta S, Wooten D, Goer F, Pilobello KT, Kumar P, et al. Assessment of striatal dopamine transporter binding in individuals with major depressive disorder: in vivo positron emission tomography and postmortem evidence. JAMA Psychiatry. 2019;76:854–61. doi: 10.1001/jamapsychiatry.2019.0801. PubMed DOI PMC
Bahi A, Dreyer JL. Dopamine transporter (DAT) knockdown in the nucleus accumbens improves anxiety- and depression-related behaviors in adult mice. Behavioural Brain Res. 2019;359:104–15. doi: 10.1016/j.bbr.2018.10.028. PubMed DOI
Perona MT, Waters S, Hall FS, Sora I, Lesch KP, Murphy DL, et al. Animal models of depression in dopamine, serotonin, and norepinephrine transporter knockout mice: prominent effects of dopamine transporter deletions. Behavioural Pharmacol. 2008;19:566–74. doi: 10.1097/FBP.0b013e32830cd80f. PubMed DOI PMC
Zhao Y, Yu J, Zhao J, Chen X, Xiong N, Wang T, et al. Intragenic transcriptional cis-Antagonism across SLC6A3. Mol Neurobiol. 2019;56:4051–60. doi: 10.1007/s12035-018-1357-5. PubMed DOI PMC
Guarnerio J, Zhang Y, Cheloni G, Panella R, Mae Katon J, Simpson M, et al. Intragenic antagonistic roles of protein and circRNA in tumorigenesis. Cell Res. 2019;29:628–40. doi: 10.1038/s41422-019-0192-1. PubMed DOI PMC
Zeidler M, Hüttenhofer A, Kress M, Kummer KK. Intragenic MicroRNAs autoregulate their host genes in both direct and indirect ways-A cross-species analysis. Cells. 2020;9:232. doi: 10.3390/cells9010232. PubMed DOI PMC
Siljee JE, Wang Y, Bernard AA, Ersoy BA, Zhang S, Marley A, et al. Subcellular localization of MC4R with ADCY3 at neuronal primary cilia underlies a common pathway for genetic predisposition to obesity. Nat Genet. 2018;50:180–5. doi: 10.1038/s41588-017-0020-9. PubMed DOI PMC
Kibinge NK, Relton CL, Gaunt TR, Richardson TG. Characterizing the causal pathway for genetic variants associated with neurological phenotypes using human brain-derived proteome data. Am J Hum Genet. 2020;106:885–92. doi: 10.1016/j.ajhg.2020.04.007. PubMed DOI PMC
Engelhard B, Finkelstein J, Cox J, Fleming W, Jang HJ, Ornelas S, et al. Specialized coding of sensory, motor and cognitive variables in VTA dopamine neurons. Nature. 2019;570:509–13. doi: 10.1038/s41586-019-1261-9. PubMed DOI PMC
Matsumoto M, Hikosaka O. Two types of dopamine neuron distinctly convey positive and negative motivational signals. Nature. 2009;459:837–41. doi: 10.1038/nature08028. PubMed DOI PMC
Lammel S, Lim BK, Ran C, Huang KW, Betley MJ, Tye KM, et al. Input-specific control of reward and aversion in the ventral tegmental area. Nature. 2012;491:212–7. doi: 10.1038/nature11527. PubMed DOI PMC
Luby JL, Baram TZ, Rogers CE, Barch DM. Neurodevelopmental optimization after early-life adversity: cross-species studies to elucidate sensitive periods and brain mechanisms to inform early intervention. Trends Neurosci. 2020;43:744–51. doi: 10.1016/j.tins.2020.08.001. PubMed DOI PMC
Belbin O, Morgan K, Medway C, Warden D, Cortina-Borja M, van Duijn CM, et al. The epistasis project: a multi-cohort study of the effects of BDNF, DBH, and SORT1 epistasis on alzheimer’s disease risk. J Alzheimer’s Dis: JAD. 2019;68:1535–47. doi: 10.3233/JAD-181116. PubMed DOI
Lin Z, Zhao Y, Chung CY, Zhou Y, Xiong N, Glatt CE, et al. High regulatability favors genetic selection in SLC18A2, a vesicular monoamine transporter essential for life. FASEB J: Off Publ Federation Am Societies Exp Biol. 2010;24:2191–200. doi: 10.1096/fj.09-140368. PubMed DOI PMC
Griesmann M, Chang Y, Liu X, Song Y, Haberer G, Crook MB, et al. Phylogenomics reveals multiple losses of nitrogen-fixing root nodule symbiosis. Science (New York, NY) 2018; 361. PubMed
Avinun R, Nevo A, Radtke SR, Brigidi BD, Hariri AR. Divergence of an association between depressive symptoms and a dopamine polygenic score in Caucasians and Asians. Eur Arch Psychiatry Clin Neurosci. 2020;270:229–35. doi: 10.1007/s00406-019-01040-x. PubMed DOI
Chen MH, Raffield LM, Mousas A, Sakaue S, Huffman JE, Moscati A, et al. Trans-ethnic and ancestry-specific blood-cell genetics in 746,667 individuals from 5 Global Populations. Cell. 2020;182:1198–213.e1114. doi: 10.1016/j.cell.2020.06.045. PubMed DOI PMC
Stryjecki C, Alyass A, Meyre D. Ethnic and population differences in the genetic predisposition to human obesity. Obes Rev: Off J Int Assoc Study Obes. 2018;19:62–80. doi: 10.1111/obr.12604. PubMed DOI
Zavala VA, Bracci PM, Carethers JM, Carvajal-Carmona L, Coggins NB, Cruz-Correa MR, et al. Cancer health disparities in racial/ethnic minorities in the United States. Br J Cancer. 2021;124:315–32. doi: 10.1038/s41416-020-01038-6. PubMed DOI PMC
Lopez KN, Morris SA, Sexson Tejtel SK, Espaillat A, Salemi JL. US mortality attributable to congenital heart disease across the lifespan from 1999 through 2017 exposes persistent racial/ethnic disparities. Circulation. 2020;142:1132–47. doi: 10.1161/CIRCULATIONAHA.120.046822. PubMed DOI PMC
Coram MA, Fang H, Candille SI, Assimes TL, Tang H. Leveraging multi-ethnic evidence for risk assessment of quantitative traits in minority populations. Am J Hum Genet. 2017;101:218–26. doi: 10.1016/j.ajhg.2017.06.015. PubMed DOI PMC
Dickson SP, Wang K, Krantz I, Hakonarson H, Goldstein DB. Rare variants create synthetic genome-wide associations. PLoS Biol. 2010;8:e1000294. doi: 10.1371/journal.pbio.1000294. PubMed DOI PMC
Talkowski ME, Kirov G, Bamne M, Georgieva L, Torres G, Mansour H, et al. A network of dopaminergic gene variations implicated as risk factors for schizophrenia. Hum Mol Genet. 2008;17:747–58. doi: 10.1093/hmg/ddm347. PubMed DOI PMC
Sabari BR, Dall’Agnese A, Young RA. Biomolecular condensates in the nucleus. Trends Biochemical Sci. 2020;45:961–77. doi: 10.1016/j.tibs.2020.06.007. PubMed DOI PMC
Statello L, Guo CJ, Chen LL, Huarte M. Gene regulation by long non-coding RNAs and its biological functions. Nat Rev Mol Cell Biol. 2021;22:96–118. doi: 10.1038/s41580-020-00315-9. PubMed DOI PMC
Wu J, Tang B, Tang Y. Allele-specific genome targeting in the development of precision medicine. Theranostics. 2020;10:3118–37. doi: 10.7150/thno.43298. PubMed DOI PMC
Zhao J, Lai L, Ji W, Zhou Q. Genome editing in large animals: current status and future prospects. Natl Sci Rev. 2019;6:402–20. doi: 10.1093/nsr/nwz013. PubMed DOI PMC
Evangelou E, Gao H, Chu C, Ntritsos G, Blakeley P, Butts AR, et al. New alcohol-related genes suggest shared genetic mechanisms with neuropsychiatric disorders. Nat Hum Behav. 2019;3:950–61. doi: 10.1038/s41562-019-0653-z. PubMed DOI PMC