Stabilization period before capturing an ultra-short vagal index can be shortened to 60 s in endurance athletes and to 90 s in university students
Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
30296274
PubMed Central
PMC6175275
DOI
10.1371/journal.pone.0205115
PII: PONE-D-18-18684
Knihovny.cz E-zdroje
- MeSH
- časové faktory MeSH
- fyzická vytrvalost fyziologie MeSH
- lidé MeSH
- mladý dospělý MeSH
- nervus vagus fyziologie MeSH
- sportovci MeSH
- srdeční frekvence fyziologie MeSH
- studenti MeSH
- univerzity MeSH
- určení tepové frekvence metody MeSH
- Check Tag
- lidé MeSH
- mladý dospělý MeSH
- mužské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
PURPOSE: To find the shortest, acceptable stabilization period before recording resting, supine ultra-short-term Ln RMSSD and heart rate (HR). METHOD: Thirty endurance-trained male athletes (age 24.1 ± 2.3 years, maximal oxygen consumption (VO2max) 64.1 ± 6.6 ml·kg-1·min-1) and 30 male students (age 23.3 ± 1.8 years, VO2max 52.8 ± 5.1 ml·kg-1·min-1) were recruited. Upon awaking at home, resting, supine RR intervals were measured continuously for 10 min using a Polar V800 HR monitor. Ultra-short-term Ln RMSSD and HR values were calculated from 1-min RR interval segments after stabilization periods from 0 to 4 min in 0.5 min increments and were compared with reference values calculated from 5-min segment after 5-min stabilization. Systematic bias and intraclass correlation coefficients (ICC) including 90% confidence intervals (CI) were calculated and magnitude based inference was conducted. RESULTS: The stabilization periods of up to 30 s for athletes and up to 60 s for students showed positive (possibly to most likely) biases for ultra-short-term Ln RMSSD compared with reference values. Stabilization periods of 60 s for athletes and 90 s for students showed trivial biases and ICCs were 0.84; 90% CI 0.72 to 0.91, and 0.88; 0.79 to 0.94, respectively. For HR, biases were trivial and ICCs were 0.93; 0.88 to 0.96, and 0.93; 0.88 to 0.96, respectively. CONCLUSION: The shortest stabilization period required to stabilize Ln RMSSD and HR was set at 60 s for endurance-trained athletes and 90 s for university students.
Zobrazit více v PubMed
Aubert AE, Seps B, Beckers F. Heart rate variability in athletes. Sports Med. 2003;33: 889–919. PubMed
Task Force of the European Society of Cardiology and the North American Society of Pacing and Electrophysiology. Heart rate variability. Standards of measurement, physiological interpretation, and clinical use. Eur Heart J. 1996;17: 354–381. PubMed
Buchheit M, Chivot A, Parouty J, Mercier D, Al Haddad H, Laursen PB, et al. Monitoring endurance running performance using cardiac parasympathetic function. Eur J Appl Physiol. 2010;108: 1153–1167. 10.1007/s00421-009-1317-x PubMed DOI
Cipryan L, Laursen PB, Plews DJ. Cardiac autonomic response following high-intensity running work-to-rest interval manipulation. Eur J Sport Sci. 2016;16: 808–817. 10.1080/17461391.2015.1103317 PubMed DOI
Esco MR, Flatt AA, Nakamura FY. Initial weekly HRV response is related to the prospective change in VO2max in female soccer players. Int J Sports Med. 2016;37: 436–441. 10.1055/s-0035-1569342 PubMed DOI
Flatt AA, Esco MR. Smartphone-derived heart rate variability and training load in a female soccer team. Int J Sports Physiol Perform. 2015; 994–1000. 10.1123/ijspp.2014-0556 PubMed DOI
Schmitt L, Regnard J, Desmarets M, Mauny F, Mourot L, Fouillot JP, et al. Fatigue shifts and scatters heart rate variability in elite endurance athletes. PLoS One. 2013;8: e71588 10.1371/journal.pone.0071588 PubMed DOI PMC
Le Meur Y, Pichon A, Schaal K, Schmitt L, Louis J, Gueneron J, et al. Evidence of parasympathetic hyperactivity in functionally overreached athletes. Med Sci Sports Exerc. 2013;45: 2061–2071. 10.1249/MSS.0b013e3182980125 PubMed DOI
Plews DJ, Laursen PB, Kilding AE, Buchheit M. Heart rate variability in elite triathletes, is variation in variability the key to effective training A case comparison. Eur J Appl Physiol. 2012;112: 3729–3741. 10.1007/s00421-012-2354-4 PubMed DOI
Botek M, McKune AJ, Krejci J, Stejskal P, Gaba A. Change in performance in response to training load adjustment based on autonomic activity. Int J Sports Med. 2014;35: 482–488. 10.1055/s-0033-1354385 PubMed DOI
Kiviniemi AM, Hautala AJ, Kinnunen H, Tulppo MP. Endurance training guided individually by daily heart rate variability measurements. Eur J Appl Physiol. 2007;101: 743–751. 10.1007/s00421-007-0552-2 PubMed DOI
Nuuttila O-P, Nikander A, Polomoshnov D, Laukkanen JA, Hakkinen K. Effects of HRV-guided vs. predetermined block training on performance, HRV and serum hormones. Int J Sports Med. 2017;38: 909–920. 10.1055/s-0043-115122 PubMed DOI
Vesterinen V, Nummela A, Heikura I, Laine T, Hynynen E, Botella J, et al. Individual endurance training prescription with heart rate variability. Med Sci Sports Exerc. 2016;48: 1347–1354. 10.1249/MSS.0000000000000910 PubMed DOI
Buchheit M. Monitoring training status with HR measures: Do all roads lead to Rome? Front Physiol. 2014;5: 1–19. 10.3389/fphys.2014.00001 PubMed DOI PMC
Plews DJ, Laursen PB, Kilding AE, Buchheit M. Evaluating training adaptation with heart-rate measures: A methodological comparison. Int J Sports Physiol Perform. 2013;8: 688–691. PubMed
Plews DJ, Laursen PB, Le Meur Y, Hausswirth C, Kilding AE, Buchheit M. Monitoring training with heart rate-variability: how much compliance is needed for valid assessment? Int J Sports Physiol Perform. 2014;9: 783–790. 10.1123/ijspp.2013-0455 PubMed DOI
Bellenger CR, Fuller JT, Thomson RL, Davison K, Robertson EY, Buckley JD. Monitoring athletic training status through autonomic heart rate regulation: A systematic review and meta-analysis. Sport Med. 2016;46: 1461–1486. PubMed
Krejčí J, Botek M, McKune AJ. Dynamics of the heart rate variability and oxygen saturation response to acute normobaric hypoxia within the first 10 min of exposure. Clin Physiol Funct Imaging. 2018;38: 56–62. 10.1111/cpf.12381 PubMed DOI
Esco MR, Flatt AA. Ultra-short-term heart rate variability indexes at rest and post-exercise in athletes: Evaluating the agreement with accepted recommendations. J Sport Sci Med. 2014;13: 535–541. PubMed PMC
Esco MR, Williford HN, Flatt AA, Freeborn TJ, Nakamura FY. Ultra-shortened time-domain HRV parameters at rest and following exercise in athletes: an alternative to frequency computation of sympathovagal balance. Eur J Appl Physiol. 2018;118: 175–184. 10.1007/s00421-017-3759-x PubMed DOI
Nakamura FY, Flatt AA, Pereira LA, Ramirez-Campillo R, Loturco I, Esco MR. Ultra-short-term heart rate variability is sensitive to training effects in team sports players. J Sports Sci Med. 2015;14: 602–605. PubMed PMC
Plews DJ, Laursen PB, Stanley J, Kilding AE, Buchheit M. Training adaptation and heart rate variability in elite endurance athletes: Opening the door to effective monitoring. Sport Med. 2013;43: 773–781. PubMed
Kiviniemi AM, Hautala AJ, Seppänen T, Mäkikallio TH, Huikuri H V, Tulppo MP. Saturation of high-frequency oscillations of R-R intervals in healthy subjects and patients after acute myocardial infarction during ambulatory conditions. Am J Physiol Heart Circ Physiol. 2004;287: H1921–H1927. 10.1152/ajpheart.00433.2004 PubMed DOI
Flatt AA, Esco MR. Heart rate variability stabilization in athletes: towards more convenient data acquisition. Clin Physiol Funct Imaging. 2016;36: 331–336. 10.1111/cpf.12233 PubMed DOI
Pereira LA, Flatt AA, Ramirez-Campillo R, Loturco I, Nakamura FY. Assessing shortened field-based heart-rate-variability-data acquisition in team-sport athletes. Int J Sports Physiol Perform. 2016;11: 154–158. 10.1123/ijspp.2015-0038 PubMed DOI
Giles D, Draper N, Neil W. Validity of the Polar V800 heart rate monitor to measure RR intervals at rest. Eur J Appl Physiol. 2016;116: 563–571. 10.1007/s00421-015-3303-9 PubMed DOI PMC
Patwardhan AR, Vallurupalli S, Evans JM, Bruce EN, Knapp CF. Override of spontaneous respiratory pattern generator reduces cardiovascular parasympathetic influence. J Appl Physiol. 1995;79: 1048–1054. 10.1152/jappl.1995.79.3.1048 PubMed DOI
Penttilä J, Helminen A, Jartti T, Kuusela T, Huikuri HV, Tulppo MP, et al. Time domain, geometrical and frequency domain analysis of cardiac vagal outflow: Effects of various respiratory patterns. Clin Physiol. 2001;21: 365–376. PubMed
Lippman N, Stein KM, Lerman BB. Comparison of methods for removal of ectopy in measurement of heart rate variability. Am J Physiol. 1994;267: H411–418. 10.1152/ajpheart.1994.267.1.H411 PubMed DOI
Hopkins WG. Measures of reliability in sports medicine and science. Sport Med. 2000;30: 375–381. PubMed
McGraw KO, Wong SP. Forming inferences about some intraclass correlation coefficients. Psychol Methods. 1996;1: 30–46.
Batterham AM, Hopkins WG. Making meaningful inferences about magnitudes. Int J Sports Physiol Perform. 2006;1: 50–57. PubMed
Hopkins WG, Marshall SW, Batterham AM, Hanin J. Progressive statistics for studies in sports medicine and exercise science. Med Sci Sports Exerc. 2009;41: 3–12. 10.1249/MSS.0b013e31818cb278 PubMed DOI
Hopkins WG. A spreadsheet for deriving a confidence interval, mechanistic inference and clinical inference from a p value. Sportscience. 2007;11: 16–20.
Achten J, Jeukendrup AE. Heart rate monitoring: applications and limitations. Sport Med. 2003;33: 517–538. PubMed
Grassi G, Turri C, Vailati S, Dell’Oro R, Mancia G. Muscle and skin sympathetic nerve traffic during the “white-coat” effect. Circulation. 1999;100: 222–225. PubMed
Kiss O, Sydó N, Vargha P, Vágó H, Czimbalmos C, Édes E, et al. Detailed heart rate variability analysis in athletes. Clin Auton Res. 2016;26: 245–252. 10.1007/s10286-016-0360-z PubMed DOI
McKune AJ, Peters B, Ramklass SS, van Heerden J, Roberts C, Krejčí J, et al. Autonomic cardiac regulation, blood pressure and cardiorespiratory fitness responses to different training doses over a 12 week group program in the elderly. Arch Gerontol Geriatr. 2017;70: 130–135. 10.1016/j.archger.2017.01.012 PubMed DOI
Buchheit M. The numbers will love you back in return—I promise. Int J Sports Physiol Perform. 2016;11: 551–554. 10.1123/IJSPP.2016-0214 PubMed DOI
Welsh AH, Knight EJ. “Magnitude-based inference”: A statistical review. Med Sci Sports Exerc. 2015;47: 874–884. 10.1249/MSS.0000000000000451 PubMed DOI PMC