Ortholinea concentrica n. sp. (Cnidaria: Myxozoa) from the Patagonian seabass Acanthistius patachonicus (Jenyns, 1840) (Perciformes: Serranidae) off Patagonia, Argentina
Language English Country Germany Media print-electronic
Document type Journal Article
Grant support
14-28784P
Grantová Agentura České Republiky
P505/12/G112
Grantová Agentura České Republiky
PubMed
30298237
DOI
10.1007/s00436-018-6105-2
PII: 10.1007/s00436-018-6105-2
Knihovny.cz E-resources
- Keywords
- Marine fish, Myxozoa, Phylogeny, SSU rDNA, South America, Taxonomy, Urinary system,
- MeSH
- Phylogeny MeSH
- Urinary Tract parasitology MeSH
- Myxozoa * classification genetics isolation & purification MeSH
- Fish Diseases parasitology MeSH
- Parasitic Diseases, Animal parasitology MeSH
- Bass parasitology MeSH
- DNA, Ribosomal genetics MeSH
- Spores classification MeSH
- Animals MeSH
- Check Tag
- Female MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Geographicals
- Argentina MeSH
- Atlantic Ocean MeSH
- Names of Substances
- DNA, Ribosomal MeSH
The Patagonian seabass Acanthistius patachonicus (Jenyns, 1840) (Serranidae) is a marine fish valued for commercial and sport fisheries from Argentina. We report a new myxosporean (Cnidaria: Myxozoa) infecting the urinary system of the Patagonian seabass from San Antonio Bay, San Matías Gulf, on the Atlantic Ocean. The mature myxospores were subspherical, 8.2-11.0 μm × 7.9-11.0 μm and 7.7-9.0 μm in thickness; two subspherical polar capsules, 2.4-3.8 μm × 2.3-3.6 μm, with 3 to 4 turns of the polar tubule; openings on different valves in almost opposite directions. Ornamented shell valves exhibited 17-20 concentrically organized surface ridges. SSU rDNA phylogenetics analyses placed the new species in the freshwater urinary tract clade, clustering in a clade formed by Myxobilatus gasterostei (Parisi, 1912), Acauda hoffmani Whipps, 2011, and other Ortholinea spp. Based on spore morphology, site of infection, and molecular data, we described this myxozoan as Ortholinea concentrica n. sp.
See more in PubMed
Parazitologiia. 2002 Mar-Apr;36(2):167-74 PubMed
J Eukaryot Microbiol. 2003 May-Jun;50(3):215-9 PubMed
Parasit Vectors. 2016 Sep 15;9(1):505 PubMed
Parasitology. 2014 Nov;141(13):1709-17 PubMed
Dis Aquat Organ. 2018 Jan 31;127(2):117-124 PubMed
PLoS One. 2012;7(2):e32679 PubMed
Q Rev Biol. 1991 Dec;66(4):411-53 PubMed
Dis Aquat Organ. 1998 Oct 8;34(2):145-54 PubMed
Mol Ecol. 2018 Apr;27(7):1651-1666 PubMed
Parasit Vectors. 2016 Oct 14;9(1):549 PubMed
Bioinformatics. 2003 Aug 12;19(12):1572-4 PubMed
J Fish Dis. 2017 Feb;40(2):243-262 PubMed
Parasitol Int. 2017 Feb;66(1):952-959 PubMed
Parasit Vectors. 2016 Jan 11;9:13 PubMed
Parasitology. 2006 Feb;132(Pt 2):193-205 PubMed
Parasitol Res. 2008 Oct;103(5):1197-205 PubMed
Zootaxa. 2013;3703:1-82 PubMed
Parasitol Res. 2015 Jul;114(7):2671-8 PubMed
J Parasitol. 2011 Dec;97(6):1159-65 PubMed
Int J Parasitol. 2004 Sep;34(10):1099-111 PubMed
J Parasitol. 2015 Feb;101(1):86-90 PubMed
Parasitol Res. 2014 Sep;113(9):3427-37 PubMed
Parasitol Res. 2011 Jul;109(1):139-45 PubMed
Bioinformatics. 2005 Feb 15;21(4):456-63 PubMed
Int J Parasitol. 2006 Dec;36(14):1521-34 PubMed
Dis Aquat Organ. 2015 Feb 10;113(1):25-32 PubMed
Parasitol Res. 2009 Apr;104(5):1173-81 PubMed
Parasitol Res. 2018 Apr;117(4):1087-1093 PubMed
Nat Methods. 2012 Jul 30;9(8):772 PubMed
Dis Aquat Organ. 2001 Oct 8;46(3):197-212 PubMed