Error Budget for Geolocation of Spectroradiometer Point Observations from an Unmanned Aircraft System
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
DP140101488
Australian Research Council
PubMed
30326591
PubMed Central
PMC6210439
DOI
10.3390/s18103465
PII: s18103465
Knihovny.cz E-zdroje
- Klíčová slova
- UAS, UAV, aerial spectroscopy, error propagation, footprint, geolocation, spectroradiometer,
- Publikační typ
- časopisecké články MeSH
We investigate footprint geolocation uncertainties of a spectroradiometer mounted on an unmanned aircraft system (UAS). Two microelectromechanical systems-based inertial measurement units (IMUs) and global navigation satellite system (GNSS) receivers were used to determine the footprint location and extent of the spectroradiometer. Errors originating from the on-board GNSS/IMU sensors were propagated through an aerial data georeferencing model, taking into account a range of values for the spectroradiometer field of view (FOV), integration time, UAS flight speed, above ground level (AGL) flying height, and IMU grade. The spectroradiometer under nominal operating conditions (8 ∘ FOV, 10 m AGL height, 0.6 s integration time, and 3 m/s flying speed) resulted in footprint extent of 140 cm across-track and 320 cm along-track, and a geolocation uncertainty of 11 cm. Flying height and orientation measurement accuracy had the largest influence on the geolocation uncertainty, whereas the FOV, integration time, and flying speed had the biggest impact on the size of the footprint. Furthermore, with an increase in flying height, the rate of increase in geolocation uncertainty was found highest for a low-grade IMU. To increase the footprint geolocation accuracy, we recommend reducing flying height while increasing the FOV which compensates the footprint area loss and increases the signal strength. The disadvantage of a lower flying height and a larger FOV is a higher sensitivity of the footprint size to changing distance from the target. To assist in matching the footprint size to uncertainty ratio with an appropriate spatial scale, we list the expected ratio for a range of IMU grades, FOVs and AGL heights.
Zobrazit více v PubMed
Pajares G. Overview and Current Status of Remote Sensing Applications Based on Unmanned Aerial Vehicles (UAVs) Photogramm. Eng. Remote Sens. 2015;81:281–330. doi: 10.14358/PERS.81.4.281. DOI
Wieneke S., Ahrends H., Damm A., Pinto F., Stadler A., Rossini M., Rascher U. Airborne based spectroscopy of red and far-red sun-induced chlorophyll fluorescence: Implications for improved estimates of gross primary productivity. Remote Sens. Environ. 2016;184:654–667. doi: 10.1016/j.rse.2016.07.025. DOI
Lucieer A., Malenovský Z., Veness T., Wallace L. HyperUAS-Imaging Spectroscopy from a Multirotor Unmanned Aircraft System. J. Field Robot. 2014;31:571–590. doi: 10.1002/rob.21508. DOI
Mulla D.J. Twenty five years of remote sensing in precision agriculture: Key advances and remaining knowledge gaps. Biosyst. Eng. 2013;114:358–371. doi: 10.1016/j.biosystemseng.2012.08.009. DOI
Zarco-Tejada P., Morales A., Testi L., Villalobos F. Spatio-temporal patterns of chlorophyll fluorescence and physiological and structural indices acquired from hyperspectral imagery as compared with carbon fluxes measured with eddy covariance. Remote Sens. Environ. 2013;133:102–115. doi: 10.1016/j.rse.2013.02.003. DOI
Burkart A., Cogliati S., Schickling A., Rascher U. A novel UAV-based ultra-light weight spectrometer for field spectroscopy. IEEE Sens. J. 2014;14:62–67. doi: 10.1109/JSEN.2013.2279720. DOI
Moreno J.F., Goulas Y., Huth A., Middleton E., Miglietta F., Mohammed G., Nedbal L., Rascher U., Verhoef W., Drusch M. Very high spectral resolution imaging spectroscopy: The Fluorescence Explorer (FLEX) mission; Proceedings of the 2016 IEEE International Geoscience and Remote Sensing Symposium (IGARSS); Beijing, China. 10–15 July 2016; pp. 264–267.
Rascher U., Alonso L., Burkart A., Cilia C., Cogliati S., Colombo R., Damm A., Drusch M., Guanter L., Hanus J., et al. Sun-induced fluorescence—A new probe of photosynthesis: First maps from the imaging spectrometer HyPlant. Glob. Chang. Biol. 2015;21:4673–4684. doi: 10.1111/gcb.13017. PubMed DOI
Drusch M., Moreno J., Del Bello U., Franco R., Goulas Y., Huth A., Kraft S., Middleton E.M., Miglietta F., Mohammed G., et al. The FLuorescence EXplorer Mission Concept-ESA’s Earth Explorer 8. IEEE Trans. Geosci. Remote Sens. 2017;55:1273–1284. doi: 10.1109/TGRS.2016.2621820. DOI
Wyber R., Malenovský Z., Ashcroft M.B., Osmond B., Robinson S.A. Do Daily and Seasonal Trends in Leaf Solar Induced Fluorescence Reflect Changes in Photosynthesis, Growth or Light Exposure? Remote Sens. 2017;9:604. doi: 10.3390/rs9060604. DOI
Pinto F., Damm A., Schickling A., Panigada C., Cogliati S., Müller-Linow M., Balvora A., Rascher U. Sun-induced chlorophyll fluorescence from high-resolution imaging spectroscopy data to quantify spatio-temporal patterns of photosynthetic function in crop canopies. Plant Cell Environ. 2016;39:1500–1512. doi: 10.1111/pce.12710. PubMed DOI
Verrelst J., van der Tol C., Magnani F., Sabater N., Rivera J.P., Mohammed G., Moreno J. Evaluating the predictive power of sun-induced chlorophyll fluorescence to estimate net photosynthesis of vegetation canopies: A scope modeling study. Remote Sens. Environ. 2016;176:139–151. doi: 10.1016/j.rse.2016.01.018. DOI
Rossini M., Nedbal L., Guanter L., Ač A., Alonso L., Burkart A., Cogliati S., Colombo R., Damm A., Drusch M., et al. Red and far red Sun-induced chlorophyll fluorescence as a measure of plant photosynthesis. Geophys. Res. Lett. 2015;42:1632–1639. doi: 10.1002/2014GL062943. DOI
Garzonio R., Di Mauro B., Colombo R., Cogliati S. Surface Reflectance and Sun-Induced Fluorescence Spectroscopy Measurements Using a Small Hyperspectral UAS. Remote Sensing. 2017;9:472. doi: 10.3390/rs9050472. DOI
Zeng C., King D.J., Richardson M., Shan B. Fusion of Multispectral Imagery and Spectrometer Data in UAV Remote Sensing. Remote Sens. 2017;9:696. doi: 10.3390/rs9070696. DOI
Burkart A., Aasen H., Alonso L., Menz G., Bareth G., Rascher U. Angular Dependency of Hyperspectral Measurements over Wheat Characterized by a Novel UAV Based Goniometer. Remote Sens. 2015;7:725–746. doi: 10.3390/rs70100725. DOI
Wallace L., Lucieer A., Turner D., Watson C. Error assessment and mitigation for hyper-temporal UAV-borne LiDAR surveys of forest inventory. Proce. Silvilaser. 2011:1–13.
Schaer P., Skaloud J., Landtwing S., Legat K. Accuracy Estimation for Laser Point Cloud Including Scanning Geometry; Proceedings of the 5th International Symposium on Mobile Mapping Technology; Padova, Italy. 29–31 May 2007.
Lichti D.D., Gordon S.J., Tipdecho T. Error Models and Propagation in Directly Georeferenced Terrestrial Laser Scanner Networks. J. Surv. Eng. 2005;131:135–142. doi: 10.1061/(ASCE)0733-9453(2005)131:4(135). DOI
Gerke M., Przybilla H.J. Accuracy Analysis of Photogrammetric UAV Image Blocks: Influence of Onboard RTK-GNSS and Cross Flight Patterns. Photogrammetrie-Fernerkundung-Geoinf. 2016;2016:17–30. doi: 10.1127/pfg/2016/0284. DOI
Ruiz J.J., Diaz-Mas L., Perez F., Viguria A. Evaluating the accuracy of DEM generation algorithms from UAV imagery. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2013;40:333–337. doi: 10.5194/isprsarchives-XL-1-W2-333-2013. DOI
Harwin S., Lucieer A. Assessing the accuracy of georeferenced point clouds produced via multi-view stereopsis from Unmanned Aerial Vehicle (UAV) imagery. Remote Sens. 2012;4:1573–1599. doi: 10.3390/rs4061573. DOI
Turner D., Lucieer A., McCabe M., Parkes S., Clarke I. Pushbroom hyperspectral imaging from an unmanned aircraft system (UAS)–geometric processing workflow and accuracy assessment. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2017;42:379. doi: 10.5194/isprs-archives-XLII-2-W6-379-2017. DOI
Aasen H., Honkavaara E., Lucieer A., Zarco-Tejada P. Quantitative Remote Sensing at Ultra-High Resolution with UAV Spectroscopy: A Review of Sensor Technology, Measurement Procedures, and Data Correction Workflows. Remote Sens. 2018;10:1091. doi: 10.3390/rs10071091. DOI
Wallace L., Lucieer A., Watson C., Turner D. Development of a UAV-LiDAR system with application to forest inventory. Remote Sens. 2012;4:1519–1543. doi: 10.3390/rs4061519. DOI
Wilkinson B.E., Mohamed A.H., Dewitt B.A., Seedahmed G.H. A novel approach to terrestrial LiDAR georeferencing. Photogramm. Eng. Remote Sens. 2010;76:683–690. doi: 10.14358/PERS.76.6.683. DOI
Zhang Y., Shen X. Direct georeferencing of airborne LiDAR data in national coordinates. ISPRS J. Photogramm. Remote Sens. 2013;84:43–51. doi: 10.1016/j.isprsjprs.2013.07.003. DOI
Jozkow G., Totha C., Grejner-Brzezinska D. UAS topographic mapping with velodyne LiDAR sensor. ISPRS Ann. Photogramm. Remote Sens. Spat. Inf. Sci. 2016;3:201–208. doi: 10.5194/isprsannals-III-1-201-2016. DOI
Li Y., Efatmaneshnik M., Dempster A.G. Attitude determination by integration of MEMS inertial sensors and GPS for autonomous agriculture applications. GPS Solut. 2012;16:41–52. doi: 10.1007/s10291-011-0207-y. DOI
Geoscience Australia. [(accessed on 16 January 2018)]; Available online: http://www.ga.gov.au/
Gautam D., Lucieer A., Malenovský Z., Watson C. Comparison of MEMS-Based and FOG-Based IMUs to Determine Sensor Pose on an Unmanned Aircraft System. J. Surv. Eng. 2017;143:4017009. doi: 10.1061/(ASCE)SU.1943-5428.0000225. DOI
Jiang C., Xue L., Chang H., Yuan G., Yuan W. Signal processing of MEMS gyroscope arrays to improve accuracy using a 1st order markov for rate signal modeling. Sensors. 2012;12:1720–1737. doi: 10.3390/s120201720. PubMed DOI PMC
Bhatt D., Aggarwal P., Bhattacharya P., Devabhaktuni V. An enhanced mems error modeling approach based on nu-support vector regression. Sensors. 2012;12:9448–9466. doi: 10.3390/s120709448. PubMed DOI PMC
Zhao Y., Horemuz M., Sjöberg L.E. Stochastic modelling and analysis of IMU sensor errors. Photogram. Cartogr. Remote Sens. 2011;22:437–449.
Uysal M., Toprak A., Polat N. DEM generation with UAV Photogrammetry and accuracy analysis in Sahitler hill. Measurement. 2015;73:539–543. doi: 10.1016/j.measurement.2015.06.010. DOI
Harwin S., Lucieer A., Osborn J. The impact of the calibration method on the accuracy of point clouds derived using unmanned aerial vehicle multi-view stereopsis. Remote Sens. 2015;7:11933–11953. doi: 10.3390/rs70911933. DOI
McCoull C. PhD Thesis. University of Tasmania; Hobart, Australia: 2016. Calibration and Accuracy Assessments of an Unmanned Aerial Vehicle Laser Scanning System.
Autodesk AutoCAD. [(accessed on 16 January 2018)]; Available online: https://www.autodesk.com/products/autocad/overview.
Turner D., Lucieer A., Wallace L. Direct georeferencing of ultrahigh-resolution UAV imagery. IEEE Trans. Geosci. Remote Sens. 2014;52:2738–2745. doi: 10.1109/TGRS.2013.2265295. DOI
Gabrlik P., Jelinek A., Janata P. Precise Multi-Sensor Georeferencing System for Micro UAVs. IFAC-PapersOnLine. 2016;49:170–175. doi: 10.1016/j.ifacol.2016.12.029. DOI
Chiang K.W., Tsai M.L., Chu C.H. The Development of an UAV Borne Direct Georeferenced Photogrammetric Platform for Ground Control Point Free Applications. Sensors. 2012;12:9161–9180. doi: 10.3390/s120709161. PubMed DOI PMC
NovAtel SPAN-CPT. [(accessed on 16 January 2018)]; Available online: https://www.novatel.com/products/span-gnss-inertial-systems/span-combined-systems/span-cpt/
Advanced Navigation Spatial Dual. [(accessed on 16 January 2018)]; Available online: http://www.advancednavigation.com.au/product/spatial-dual/
Lord Sensing MicroStrain. [(accessed on 16 January 2018)]; Available online: http://www.microstrain.com/inertial/3dm-gx3-35/
Von Bueren S.K., Burkart A., Hueni A., Rascher U., Tuohy M.P., Yule I.J. Deploying four optical UAV-based sensors over grassland: Challenges and limitations. Biogeosciences. 2015;12:163–175. doi: 10.5194/bg-12-163-2015. DOI
Malenovský Z., Lucieer A., King D.H., Turnbull J.D., Robinson S.A. Unmanned aircraft system advances health mapping of fragile polar vegetation. Methods Ecol. Evol. 2017;8:1842–1857. doi: 10.1111/2041-210X.12833. DOI