Melt Viscoelastic Assessment of Poly(Lactic Acid) Composting: Influence of UV Ageing
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
PubMed
30340360
PubMed Central
PMC6222331
DOI
10.3390/molecules23102682
PII: molecules23102682
Knihovny.cz E-zdroje
- Klíčová slova
- PLA, biodegradation, photo-degradation, rheology,
- MeSH
- biodegradace * MeSH
- kinetika MeSH
- molekulová hmotnost MeSH
- polyestery chemie MeSH
- polymery chemie MeSH
- viskoelastické látky chemie MeSH
- viskozita MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- poly(lactide) MeSH Prohlížeč
- polyestery MeSH
- polymery MeSH
- viskoelastické látky MeSH
This study is devoted to the degradation pathway (bio, photo degradation and photo/bio) of Poly(Lactic acid) PLA polymers by means of melt viscoelasticity. A comparison was made between three PLA polymers with different microstructures (L, D stereoisomers). Biodegradability was determined during composting by burying the polymer films in compost at 58 °C. Melt viscoelasticity was used to assess the molecular evolution of the materials during the composting process. Viscoelastic data were plotted in the complex plane. We used this methodology to check the kinetics of the molecular weight decrease during the initial stages of the degradation, through the evolution of Newtonian viscosity. After a few days in compost, the Newtonian viscosity decreased sharply, meaning that macromolecular chain scissions began at the beginning of the experiments. However, a double molar mass distribution was also observed on Cole⁻Cole plots, indicating that there is also a chain recombination mechanism competing with the chain scission mechanism. PLA hydrolysis was observed by infra-red spectroscopy, where acid characteristic peaks appeared and became more intense during experiments, confirming hydrolytic activity during the first step of biodegradation. During UV ageing, polymer materials undergo a deep molecular evolution. After photo-degradation, lower viscosities were measured during biodegradation, but no significant differences in composting were found.
Zobrazit více v PubMed
Mooney B.P. The second green revolution? Production of plant-based biodegradable plastics. Biochem. J. 2009;418:219–232. doi: 10.1042/BJ20081769. PubMed DOI
Huang J.-C., Shetty A.S., Wang M.-S. Biodegradable plastics: A review. Adv. Polym. Technol. 1990;10:23–30. doi: 10.1002/adv.1990.060100103. DOI
Song J.H., Murphy R.J., Narayan R., Davies G.B.H. Biodegradable and compostable alternatives to conventional plastics. Philos. Trans. R. Soc. B Biol. Sci. 2009;364:2127–2139. doi: 10.1098/rstb.2008.0289. PubMed DOI PMC
Hakkarainen M. Degradable Aliphatic Polyesters. Springer; Berlin/Heidelberg, Germany: 2002. Aliphatic polyesters: Abiotic and biotic degradation and degradation products; pp. 113–138.
Quynh T.M., Mitomo H., Nagasawa N., Wada Y., Yoshii F., Tamada M. Properties of crosslinked polylactides (plla & pdla) by radiation and its biodegradability. Eur. Polym. J. 2007;43:1779–1785.
Karamanlioglu M., Robson G.D. The influence of biotic and abiotic factors on the rate of degradation of poly(lactic) acid (pla) coupons buried in compost and soil. Polym. Degrad. Stab. 2013;98:2063–2071. doi: 10.1016/j.polymdegradstab.2013.07.004. DOI
Lunt J. Large-scale production, properties and commercial applications of polylactic acid polymers. Polym. Degrad. Stab. 1998;59:145–152. doi: 10.1016/S0141-3910(97)00148-1. DOI
Auras R., Harte B., Selke S. An overview of polylactides as packaging materials. Macromol. Biosci. 2004;4:835–864. doi: 10.1002/mabi.200400043. PubMed DOI
Natural Fibers, Biopolymers, and Biocomposites. 1st ed. CRC Press; Boca Raton, FL, USA: 2005.
Regnell Andersson S., Hakkarainen M., Inkinen S., Södergård A., Albertsson A.-C. Customizing the hydrolytic degradation rate of stereocomplex pla through different pdla architectures. Biomacromolecules. 2012;13:1212–1222. doi: 10.1021/bm300196h. PubMed DOI
Li S., Tenon M., Garreau H., Braud C., Vert M. Enzymatic degradation of stereocopolymers derived from l-, dl- and meso-lactides. Polym. Degrad. Stab. 2000;67:85–90. doi: 10.1016/S0141-3910(99)00091-9. DOI
Tsuji H., Miyauchi S. Enzymatic hydrolysis of poly(lactide)s: Effects of molecular weight, l-lactide content, and enantiomeric and diastereoisomeric polymer blending. Biomacromolecules. 2001;2:597–604. doi: 10.1021/bm010048k. PubMed DOI
Agarwal M., Koelling K.W., Chalmers J.J. Characterization of the degradation of polylactic acid polymer in a solid substrate environment. Biotechnol. Prog. 1998;14:517–526. doi: 10.1021/bp980015p. PubMed DOI
Pranamuda H., Tsuchii A., Tokiwa Y. Poly(l-lactide)-degrading enzyme produced by Amycolatopsis sp. Macromol. Biosci. 2001;1:25–29. doi: 10.1002/1616-5195(200101)1:1<25::AID-MABI25>3.0.CO;2-3. DOI
Tokiwa Y., Calabia B.P. Biodegradability and biodegradation of poly(lactide) Appl. Microbiol. Biotechnol. 2006;72:244–251. doi: 10.1007/s00253-006-0488-1. PubMed DOI
Pagga U. Testing biodegradability with standardized methods. Chemosphere. 1997;35:2953–2972. doi: 10.1016/S0045-6535(97)00262-2. PubMed DOI
Feldman D. Polymer weathering: Photo-oxidation. J. Polym. Environ. 2002;10:163–173. doi: 10.1023/A:1021148205366. DOI
Kijchavengkul T., Auras R., Rubino M., Ngouajio M., Fernandez R.T. Assessment of aliphatic–aromatic copolyester biodegradable mulch films. Part ii: Laboratory simulated conditions. Chemosphere. 2008;71:1607–1616. doi: 10.1016/j.chemosphere.2008.01.037. PubMed DOI
Stloukal P., Verney V., Commereuc S., Rychly J., Matisova-Rychlá L., Pis V., Koutny M. Assessment of the interrelation between photooxidation and biodegradation of selected polyesters after artificial weathering. Chemosphere. 2012;88:1214–1219. doi: 10.1016/j.chemosphere.2012.03.072. PubMed DOI
Santonja-Blasco L., Ribes-Greus A., Alamo R.G. Comparative thermal, biological and photodegradation kinetics of polylactide and effect on crystallization rates. Polym. Degrad. Stab. 2013;98:771–784. doi: 10.1016/j.polymdegradstab.2012.12.012. DOI
Tsuji H., Miyauchi S. Poly(l-lactide): Vi effects of crystallinity on enzymatic hydrolysis of poly(l-lactide) without free amorphous region. Polym. Degrad. Stab. 2001;71:415–424. doi: 10.1016/S0141-3910(00)00191-9. DOI
Pantani R., Sorrentino A. Influence of crystallinity on the biodegradation rate of injection-moulded poly(lactic acid) samples in controlled composting conditions. Polym. Degrad. Stab. 2013;98:1089–1096. doi: 10.1016/j.polymdegradstab.2013.01.005. DOI
Shah A.A., Hasan F., Hameed A., Ahmed S. Biological degradation of plastics: A comprehensive review. Biotechnol. Adv. 2008;26:246–265. doi: 10.1016/j.biotechadv.2007.12.005. PubMed DOI
Commereuc S., Askanian H., Verney V., Celli A., Marchese P., Berti C. About the end life of novel aliphatic and aliphatic-aromatic (co)polyesters after uv-weathering: Structure/degradability relationships. Polym. Degrad. Stab. 2013;98:1321–1328. doi: 10.1016/j.polymdegradstab.2013.03.030. DOI
Feng L.-D., Sun B., Bian X.-C., Chen Z.-M., Chen X.-S. Determination of d-lactate content in poly(lactic acid) using polarimetry. Polym. Test. 2010;29:771–776. doi: 10.1016/j.polymertesting.2010.06.005. DOI
Sarasua J.-R., Prud’homme R.E., Wisniewski M., Le Borgne A., Spassky N. Crystallization and melting behavior of polylactides. Macromolecules. 1998;31:3895–3905. doi: 10.1021/ma971545p. DOI
Verney V., Michel A. Representation of the rheological properties of polymer melts in terms of complex fluidity. Rheol. Acta. 1989;28:54–60. doi: 10.1007/BF01354769. DOI
Palade L.-I., Lehermeier H.J., Dorgan J.R. Melt rheology of high l-content poly(lactic acid) Macromolecules. 2001;34:1384–1390. doi: 10.1021/ma001173b. DOI
Dorgan J.R., Janzen J., Clayton M.P., Hait S.B., Knauss D.M. Melt rheology of variable l-content poly(lactic acid) J. Rheol. 2005;49:607–619. doi: 10.1122/1.1896957. DOI
Verney V. Rhéologie, oxydation et vieillissement des polymères. Rhéologie. 2011;20:6.
Husárová L., Pekařová S., Stloukal P., Kucharzcyk P., Verney V., Commereuc S., Ramone A., Koutny M. Identification of important abiotic and biotic factors in the biodegradation of poly(l-lactic acid) Int. J. Biol. Macromol. 2014;71:155–162. doi: 10.1016/j.ijbiomac.2014.04.050. PubMed DOI
Rangari D., Vasanthan N. Study of strain-induced crystallization and enzymatic degradation of drawn poly(l-lactic acid) (plla) films. Macromolecules. 2012;45:7397–7403. doi: 10.1021/ma301482j. DOI
Vasanthan N., Ly O. Effect of microstructure on hydrolytic degradation studies of poly (l-lactic acid) by ftir spectroscopy and differential scanning calorimetry. Polym. Degrad. Stab. 2009;94:1364–1372. doi: 10.1016/j.polymdegradstab.2009.05.015. DOI
MacDonald R.T., McCarthy S.P., Gross R.A. Enzymatic degradability of poly(lactide): Effects of chain stereochemistry and material crystallinity. Macromolecules. 1996;29:7356–7361. doi: 10.1021/ma960513j. DOI