Melt Viscoelastic Assessment of Poly(Lactic Acid) Composting: Influence of UV Ageing

. 2018 Oct 18 ; 23 (10) : . [epub] 20181018

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid30340360

This study is devoted to the degradation pathway (bio, photo degradation and photo/bio) of Poly(Lactic acid) PLA polymers by means of melt viscoelasticity. A comparison was made between three PLA polymers with different microstructures (L, D stereoisomers). Biodegradability was determined during composting by burying the polymer films in compost at 58 °C. Melt viscoelasticity was used to assess the molecular evolution of the materials during the composting process. Viscoelastic data were plotted in the complex plane. We used this methodology to check the kinetics of the molecular weight decrease during the initial stages of the degradation, through the evolution of Newtonian viscosity. After a few days in compost, the Newtonian viscosity decreased sharply, meaning that macromolecular chain scissions began at the beginning of the experiments. However, a double molar mass distribution was also observed on Cole⁻Cole plots, indicating that there is also a chain recombination mechanism competing with the chain scission mechanism. PLA hydrolysis was observed by infra-red spectroscopy, where acid characteristic peaks appeared and became more intense during experiments, confirming hydrolytic activity during the first step of biodegradation. During UV ageing, polymer materials undergo a deep molecular evolution. After photo-degradation, lower viscosities were measured during biodegradation, but no significant differences in composting were found.

Zobrazit více v PubMed

Mooney B.P. The second green revolution? Production of plant-based biodegradable plastics. Biochem. J. 2009;418:219–232. doi: 10.1042/BJ20081769. PubMed DOI

Huang J.-C., Shetty A.S., Wang M.-S. Biodegradable plastics: A review. Adv. Polym. Technol. 1990;10:23–30. doi: 10.1002/adv.1990.060100103. DOI

Song J.H., Murphy R.J., Narayan R., Davies G.B.H. Biodegradable and compostable alternatives to conventional plastics. Philos. Trans. R. Soc. B Biol. Sci. 2009;364:2127–2139. doi: 10.1098/rstb.2008.0289. PubMed DOI PMC

Hakkarainen M. Degradable Aliphatic Polyesters. Springer; Berlin/Heidelberg, Germany: 2002. Aliphatic polyesters: Abiotic and biotic degradation and degradation products; pp. 113–138.

Quynh T.M., Mitomo H., Nagasawa N., Wada Y., Yoshii F., Tamada M. Properties of crosslinked polylactides (plla & pdla) by radiation and its biodegradability. Eur. Polym. J. 2007;43:1779–1785.

Karamanlioglu M., Robson G.D. The influence of biotic and abiotic factors on the rate of degradation of poly(lactic) acid (pla) coupons buried in compost and soil. Polym. Degrad. Stab. 2013;98:2063–2071. doi: 10.1016/j.polymdegradstab.2013.07.004. DOI

Lunt J. Large-scale production, properties and commercial applications of polylactic acid polymers. Polym. Degrad. Stab. 1998;59:145–152. doi: 10.1016/S0141-3910(97)00148-1. DOI

Auras R., Harte B., Selke S. An overview of polylactides as packaging materials. Macromol. Biosci. 2004;4:835–864. doi: 10.1002/mabi.200400043. PubMed DOI

Natural Fibers, Biopolymers, and Biocomposites. 1st ed. CRC Press; Boca Raton, FL, USA: 2005.

Regnell Andersson S., Hakkarainen M., Inkinen S., Södergård A., Albertsson A.-C. Customizing the hydrolytic degradation rate of stereocomplex pla through different pdla architectures. Biomacromolecules. 2012;13:1212–1222. doi: 10.1021/bm300196h. PubMed DOI

Li S., Tenon M., Garreau H., Braud C., Vert M. Enzymatic degradation of stereocopolymers derived from l-, dl- and meso-lactides. Polym. Degrad. Stab. 2000;67:85–90. doi: 10.1016/S0141-3910(99)00091-9. DOI

Tsuji H., Miyauchi S. Enzymatic hydrolysis of poly(lactide)s:  Effects of molecular weight, l-lactide content, and enantiomeric and diastereoisomeric polymer blending. Biomacromolecules. 2001;2:597–604. doi: 10.1021/bm010048k. PubMed DOI

Agarwal M., Koelling K.W., Chalmers J.J. Characterization of the degradation of polylactic acid polymer in a solid substrate environment. Biotechnol. Prog. 1998;14:517–526. doi: 10.1021/bp980015p. PubMed DOI

Pranamuda H., Tsuchii A., Tokiwa Y. Poly(l-lactide)-degrading enzyme produced by Amycolatopsis sp. Macromol. Biosci. 2001;1:25–29. doi: 10.1002/1616-5195(200101)1:1<25::AID-MABI25>3.0.CO;2-3. DOI

Tokiwa Y., Calabia B.P. Biodegradability and biodegradation of poly(lactide) Appl. Microbiol. Biotechnol. 2006;72:244–251. doi: 10.1007/s00253-006-0488-1. PubMed DOI

Pagga U. Testing biodegradability with standardized methods. Chemosphere. 1997;35:2953–2972. doi: 10.1016/S0045-6535(97)00262-2. PubMed DOI

Feldman D. Polymer weathering: Photo-oxidation. J. Polym. Environ. 2002;10:163–173. doi: 10.1023/A:1021148205366. DOI

Kijchavengkul T., Auras R., Rubino M., Ngouajio M., Fernandez R.T. Assessment of aliphatic–aromatic copolyester biodegradable mulch films. Part ii: Laboratory simulated conditions. Chemosphere. 2008;71:1607–1616. doi: 10.1016/j.chemosphere.2008.01.037. PubMed DOI

Stloukal P., Verney V., Commereuc S., Rychly J., Matisova-Rychlá L., Pis V., Koutny M. Assessment of the interrelation between photooxidation and biodegradation of selected polyesters after artificial weathering. Chemosphere. 2012;88:1214–1219. doi: 10.1016/j.chemosphere.2012.03.072. PubMed DOI

Santonja-Blasco L., Ribes-Greus A., Alamo R.G. Comparative thermal, biological and photodegradation kinetics of polylactide and effect on crystallization rates. Polym. Degrad. Stab. 2013;98:771–784. doi: 10.1016/j.polymdegradstab.2012.12.012. DOI

Tsuji H., Miyauchi S. Poly(l-lactide): Vi effects of crystallinity on enzymatic hydrolysis of poly(l-lactide) without free amorphous region. Polym. Degrad. Stab. 2001;71:415–424. doi: 10.1016/S0141-3910(00)00191-9. DOI

Pantani R., Sorrentino A. Influence of crystallinity on the biodegradation rate of injection-moulded poly(lactic acid) samples in controlled composting conditions. Polym. Degrad. Stab. 2013;98:1089–1096. doi: 10.1016/j.polymdegradstab.2013.01.005. DOI

Shah A.A., Hasan F., Hameed A., Ahmed S. Biological degradation of plastics: A comprehensive review. Biotechnol. Adv. 2008;26:246–265. doi: 10.1016/j.biotechadv.2007.12.005. PubMed DOI

Commereuc S., Askanian H., Verney V., Celli A., Marchese P., Berti C. About the end life of novel aliphatic and aliphatic-aromatic (co)polyesters after uv-weathering: Structure/degradability relationships. Polym. Degrad. Stab. 2013;98:1321–1328. doi: 10.1016/j.polymdegradstab.2013.03.030. DOI

Feng L.-D., Sun B., Bian X.-C., Chen Z.-M., Chen X.-S. Determination of d-lactate content in poly(lactic acid) using polarimetry. Polym. Test. 2010;29:771–776. doi: 10.1016/j.polymertesting.2010.06.005. DOI

Sarasua J.-R., Prud’homme R.E., Wisniewski M., Le Borgne A., Spassky N. Crystallization and melting behavior of polylactides. Macromolecules. 1998;31:3895–3905. doi: 10.1021/ma971545p. DOI

Verney V., Michel A. Representation of the rheological properties of polymer melts in terms of complex fluidity. Rheol. Acta. 1989;28:54–60. doi: 10.1007/BF01354769. DOI

Palade L.-I., Lehermeier H.J., Dorgan J.R. Melt rheology of high l-content poly(lactic acid) Macromolecules. 2001;34:1384–1390. doi: 10.1021/ma001173b. DOI

Dorgan J.R., Janzen J., Clayton M.P., Hait S.B., Knauss D.M. Melt rheology of variable l-content poly(lactic acid) J. Rheol. 2005;49:607–619. doi: 10.1122/1.1896957. DOI

Verney V. Rhéologie, oxydation et vieillissement des polymères. Rhéologie. 2011;20:6.

Husárová L., Pekařová S., Stloukal P., Kucharzcyk P., Verney V., Commereuc S., Ramone A., Koutny M. Identification of important abiotic and biotic factors in the biodegradation of poly(l-lactic acid) Int. J. Biol. Macromol. 2014;71:155–162. doi: 10.1016/j.ijbiomac.2014.04.050. PubMed DOI

Rangari D., Vasanthan N. Study of strain-induced crystallization and enzymatic degradation of drawn poly(l-lactic acid) (plla) films. Macromolecules. 2012;45:7397–7403. doi: 10.1021/ma301482j. DOI

Vasanthan N., Ly O. Effect of microstructure on hydrolytic degradation studies of poly (l-lactic acid) by ftir spectroscopy and differential scanning calorimetry. Polym. Degrad. Stab. 2009;94:1364–1372. doi: 10.1016/j.polymdegradstab.2009.05.015. DOI

MacDonald R.T., McCarthy S.P., Gross R.A. Enzymatic degradability of poly(lactide):  Effects of chain stereochemistry and material crystallinity. Macromolecules. 1996;29:7356–7361. doi: 10.1021/ma960513j. DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...